Đề thi thử đại học môn toán,đề mới cập nhật năm 2014. Kiến thức đưa ra bam sát chương trình học và cũng có một số câu khó dành cho học sinh khá và giỏi. Giúp cải thiện kiến thức cho học sinh và giúp học sinh vượt qua ki thi một cách dễ dàng hơn.
TRƯỜ NG ĐẠIHỌCVINH TRƯỜNGTHPTCHUYÊN ĐỀKHẢOSÁTCHẤTLƯỢNGLỚP12,LẦN1 NĂM2014 Môn:TOÁN; Khối:A vàA 1 ; Thờigianlàmbài:180 phút I. PHẦNCHUNGCHOTẤTCẢTHÍSINH(7,0 điểm) Câu 1 (2,0 điểm). Chohàmsố 2 3 . 1 x y x - = - a) Khảosátsựbiếnthiên vàvẽđồthị (H)củ ahàmsố đãcho. b)Tìmmđểđườngthẳng : 3 0d x y m + + = cắt(H)tạihaiđiểmM, Nsaochotamgiác AMN vuôngtại điểm (1; 0).A Câu 2 (1,0 điểm). Giảiphươngtrình sin3 2cos2 3 4sin cos (1 sin ).x x x x x + = + + + Câu3(1,0 điểm). Giải bấtphươngtrình 2 4 1 2 2 3 ( 1)( 2).x x x x + + + £ - - Câu 4 (1,0 điểm). Tính tíchphân 1 2 0 3 2ln(3 1) d . ( 1) x x I x x + + = + ò Câu5(1,0điểm). ChohìnhchópS.ABCD cóđáy ABCD làhìnhchữnhật,mặtbên SAD làtamgiácvuôngtại S, hìnhchiếuvuônggóccủa S lênmặtphẳng(ABCD)làđiểm H thuộccạnh AD saocho 3 .HA HD = Gọi M làtrung điểm củaAB.Biếtrằng 2 3SA a = vàđườngthẳng SC tạovớiđáy mộtgóc 0 30 . Tínhtheo a thểtíchkhốichóp S.ABCD vàkhoảngcáchtừ M đếnmặtphẳng(SBC). Câu6(1,0điểm). Giảsửx,y,zlàcá csốthựckhôngâmt hỏamãn 2 2 2 5( ) 6( ).x y z xy yz zx + + = + + Tìmgiá trịlớnnhấtcủabiểuthức 2 2 2( ) ( ).P x y z y z = + + - + II. PHẦNRIÊNG (3,0 điểm) Thísinhchỉđượclàmmộttronghaiphần(phần a hoặc phần b) a.TheochươngtrìnhChuẩn Câu7.a(1,0 điểm). Trongmặtphẳngvớihệtọađộ ,Oxy chotamgiácABCcó (2;1)M làtrungđiểmcạnh AC, điểm (0; 3)H - làchânđườngcaokẻtừ A,điểm (23; 2)E - thuộcđườngthẳngchứatrungtuyếnkẻtừ C.Tìmtọa độđiểm B biếtđiểm A thuộcđườngthẳng : 2 3 5 0d x y + - = vàđiểm C cóhoànhđộdương. Câu8.a(1,0điểm).Trongkhônggianvớihệtọađộ ,Oxyz chođườngthẳng 2 1 2 : 1 1 2 x y z d + - - = = - vàhai mặtphẳng ( ) : 2 2 3 0, ( ) : 2 2 7 0.P x y z Q x y z + + + = - - + = Viếtphươngtrìnhmặtcầucótâmthuộcd,đồng thờitiếpxúcvớihaimặtphẳng(P)và(Q). Câu9.a (1,0 điểm). Chotậphợp { } 1, 2, 3, 4, 5 .E = GọiM làtậphợptấtcảcácsố tựnhiêncóítnhất3chữsố, cácchữsốđôimộtkhácnhauthuộc E.Lấyngẫunhiênmộtsố thuộc M.Tí nhxácsuấtđểtổngcá cchữsốcủa sốđóbằng10. b.TheochươngtrìnhNâng cao Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ ,Oxy cho hai điểm (1; 2), (4; 1)A B và đườ ng thẳng : 3 4 5 0.x y D - + = Viếtphươngtrình đườngtròn điqua A,Bvàcắt D tại C,D sao cho 6.CD = Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độ ,Oxyz cho điểm (1; 1; 0)M và hai đường thẳng 1 2 1 3 1 1 3 2 : , : . 1 1 1 1 2 3 x y z x y z d d - - - - + - = = = = - - - Viếtphươngtrìnhmặtphẳng(P)songsongvới 1 d và 2 d đồngthờicách Mmộtkhoảngbằng 6. Câu9.b (1,0 điểm). Tìmsốnguyêndương n thỏamãn 0 1 2 3 1 1 1 1 ( 1) 1 . . . . 2 3 4 5 2 156 n n n n n n n C C C C C n - - + - + + = + Hết www.VNMATH.com TRNGIHCVINH TRNGTHPTCHUYấN PNKHOSTCHTLNGLP12,LN1 NM2014 Mụn:TON KhiA,A 1 Thigianlmbi:180phỳt Cõu ỏpỏn im a)(1,0im) 1 0 .Tpxỏcnh: \{1}.R 2 0 .Sbinthiờn: *Giihntivụcc:Tacú lim 2 x y đ-Ơ = v lim 2. x y đ+Ơ = Giihnvụcc: 1 lim x y + đ = -Ơ v 1 lim . x y - đ = +Ơ Suyrath(H)cútimcnnganglngthng 2,y = timcnnglngthng 1.x = *Chiubinthiờn:Tacú 2 1 ' 0, 1. ( 1) y x x = > " ạ - Suyrahmsngbintrờnmikhong ( ) 1 -Ơ v ( ) 1 . + Ơ 0,5 *Bngbinthiờn: 3 0 .th: thctOx ti 3 0 , 2 ổ ử ỗ ữ ố ứ ct Oy ti (03). Nhngiaoim (1 2)I cahaitimcn lmtõmixng. 0,5 b) (1,0im) Ta cú 1 : . 3 3 m d y x = - - Hon h giao im ca d v (H) l nghim ca phng trỡnh 2 3 1 , 1 3 3 x m x x - = - - - hay 2 ( 5) 9 0, 1.x m x m x + + - - = ạ (1) Tacú 2 ( 7) 12 0,m D = + + > vimim.Suyraphngtrỡnh(1)cú 2nghimphõnbit.Hnna c2nghim 1 2 ,x x ukhỏc1.Doú d luụn ct(H)ti2imphõnbit 1 1 2 2 ( ), ( ).M x y N x y 0,5 Cõu1. (2,0 im) Tacú 1 1 2 2 ( 1 ), ( 1 ).AM x y AN x y = - = - uuuur uuur Tamgiỏc AMNvuụngti A . 0.AM AN = uuuur uuur Hay 1 2 1 2 ( 1)( 1) 0x x y y - - + = 1 2 1 2 1 ( 1)( 1) ( )( ) 0 9 x x x m x m - - + + + = 2 1 2 1 2 10 ( 9)( ) 9 0.x x m x x m + - + + + = (2) pdngnhlýViet,tacú 1 2 1 2 5, 9.x x m x x m + = - - = - - Thayvo(2)tac 2 10( 9) ( 9)( 5) 9 0m m m m - - + - - - + + = 6 36 0 6.m m - - = = - Vygiỏtrcam l 6.m = - 0,5 Cõu2. (1,0 im) Phngtrỡnh óchotngngvi sin3 sin 2cos2 3(sin 1) cos (sin 1)x x x x x x - + = + + + 2 2cos2 sin 2cos2 (sin 1)(cos 3) (sin 1)(2cos2 cos 3) 0 (sin 1)(4cos cos 5) 0 (sin 1)(cos 1)(4cos 5) 0. x x x x x x x x x x x x x x + = + + + - - = + - - = + + - = 0,5 x 'y y Ơ - Ơ + 1 2 Ơ - + + Ơ + 2 x O y I 3 2 1 3 2 www.VNMATH.com *) sin 1 2 , 2 x x k p p = - Û = - + .k ÎZ *) cos 1 2 ,x x k p p = - Û = + .k ÎZ *) 4cos 5 0x - = vônghiệm. Vậyphươngtrìnhcónghiệm 2 , 2 , . 2 x k x k k p p p p = - + = + ÎZ 0,5 Điềukiện : 1.x ³ - Nhậnthấy 1x = - làmộtnghiệmcủabấtphươngtrình. Xét 1.x > - Khiđóbấtphươngtrìn h đãchotươngđươngvới ( ) ( ) 3 2 4 1 2 2 2 3 3 2 12x x x x x + - + + - £ - - - ( ) 2 2 4( 3) 4( 3) ( 3)( 2 4) 1 2 2 3 3 4 4 3 ( 1) 3 0. (1) 1 2 2 3 3 x x x x x x x x x x x - - Û + £ - + + + + + + æ ö Û - + - + - £ ç ÷ + + + + è ø 0,5 Câu3. (1,0 điểm) Vì 1x > - nên 1 0x + > và 2 3 1.x + > Suyra 4 4 3, 1 2 2 3 3x x + < + + + + vìvậy 2 4 4 ( 1) 3 0. 1 2 2 3 3 x x x + - + - < + + + + Dođóbấtphươngtrình (1) 3 0 3.x x Û - ³ Û ³ Vậynghiệmcủabấtphươngtrìnhlà 1x = - và 3.x ³ 0,5 Tacó 1 1 2 2 0 0 3 ln(3 1) d 2 d . ( 1) ( 1) x x I x x x x + = + + + ò ò Đặt 3d ln(3 1) d ; 3 1 x u x u x = + Þ = + 2 d 1 d . 1 ( 1) x v v x x = Þ = - + + Ápdụngcôngthứctíchphântừngphầntacó 0,5 Câu4. (1,0 điểm) 1 1 1 2 0 0 0 1 1 2 0 0 1 1 0 0 3 2ln(3 1) d d 6 1 (3 1)( 1) ( 1) 3 3 3 1 d ln 4 3 d 1 3 1 1( 1) 3 3 ln 4 3ln 3 1 4ln 2. 1 2 x x x I x x x x x x x x x xx x x + = - + + + + + æ ö æ ö = - - + - ç ÷ ç ÷ + + + + è ø è ø = - + + = - + + ò ò ò ò 0,5 Vì ( )SH ABCD ^ nên · ( ) · 0 , ( ) 30 .SCH SC ABCD = = Trongtamgiác vuông SAD tacó 2 .SA AH AD = 2 2 3 12 4 ; 3 ; 4 a AD AD a HA a HD a Û = Þ = = = 0 . 3 .cot30 3SH HA HD a HC SH a Þ = = Þ = = 2 2 2 2 .CD HC HD a Þ = - = Suyra 2 . 8 2 ABCD S AD CD a = = . Suyra 3 . 1 8 6 . . 3 3 S ABCD ABCD a V SH S = = 0,5 Câu5. (1,0 điểm) Vì M làtrungđiểm ABvà AH // (SBC)nên ( ) ( ) ( ) 1 1 , ( ) ,( ) , ( ) . 2 2 d M SBC d A SBC d H SBC = = (1) Kẻ HK BC ^ tại K, 'HH SK ^ tại '.H Vì ( )BC SHK ^ nên ' ' ( ).BC HH HH SBC ^ Þ ^ (2) Trongtamgiácvuông SHK tacó 2 2 2 2 1 1 1 11 2 6 2 66 ' . 11 ' 24 11 a HH a HH HK HS a = + = Þ = = (3) Từ(1),(2)và(3)suyra ( ) 66 , ( ) . 11 d M SBC a = 0,5 Câu6. Tacó 2 2 2 2 2 5 5 ( ) 5 5( ) 6( ) 2 x y z x y z xy yz zx + + £ + + = + + 2 1 6 ( ) 6. ( ) . 4 x y z y z £ + + + 0,5 A B D C K H S 'H M a www.VNMATH.com Doú 2 2 5 6 ( ) ( ) 0,x x y z y z - + + + Ê hay . 5 y z x y z + Ê Ê + Suyra 2( )x y z y z + + Ê + . Khiú 2 1 2( ) ( ) 2 P x y z y z Ê + + - + 2 2 1 1 4( ) ( ) 2 ( ) . 2 2 y z y z y z y z Ê + - + = + - + t ,y z t + = khiú 0t v 4 2 . 2 t P t Ê - (1) (1,0 im) Xộthms 4 1 ( ) 2 2 f t t t = - vi 0.t Tacú 3 '( ) 2 2 '( ) 0 1.f t t f t t = - = = Suyrabngbinthiờn: Davobngbinthiờntacú 3 ( ) (1) 2 f t f Ê = vimi 0.t (2) T(1)v(2)tacú 3 , 2 P Ê dun gthcxyrakhi 1 1 1 2 x y z x y z y z y z = + ỡ = ỡ ù ù = ớ ớ = = ù ù + = ợ ợ VygiỏtrlnnhtcaP l 3 , 2 tckhi 1 1, . 2 x y z = = = 0,5 1 3 : 2 3 5 0 ( 3 1, 2 1). 1 2 x t A d x y A a a y t = - ỡ ẻ + - = ị - + + ớ = + ợ Vỡ (21)M lt rungim AC nờn suyra (3 3 1 2 )C a a + - ( 3 1 2 4) (3 3 4 2 ). HA a a HC a a ỡ = - + + ù ị ớ = + - ù ợ uuur uuur Vỡ ã 0 90AHC = nờn 1 . 0 19 . 13 a HA HC a = ộ ờ = ị ờ = - ờ ở uuur uuur *)Vi 1 ( 2 3), (6 1)a A C = ị - - thamón. *)Vi 19 18 51 13 13 13 a C ổ ử = - ị - ỗ ữ ố ứ khụngthamón. 0,5 Cõu 7.a (1,0 im) Vi ( 2 3), (6 1)A C - - tacúphngtrỡnh : 17 11 0,CE x y + + = phngtrỡnh : 3 9 0BC x y - - = Suyra (3 9 )B b b BC + ẻ ịtrungim AB l 3 7 3 . 2 2 b b N + + ổ ử ỗ ữ ố ứ M 4 ( 3 4).N CE b B ẻ ị = - ị - - 0,5 Tõmmtcu (S)l ( 2 1 2 2) .I t t t d - - + + ẻ Vỡ(S)tipxỳc(P),(Q)nờn ( ) ( ) , ( ) , ( )d I P d I Q R = = 0,5 Cõu 8.a (1,0 im) 1 1 2, ( 4 3 2), 3 7 1 3 3 2 2 3 3 3, ( 5 4 4), 3 3 t R I R t t R t R I R ộ ộ = - = - - = ờ ờ + - - = = ị ờ ờ ờ ờ = - = - - = ờ ờ ở ở Suyrapt(S)l 2 2 2 1 ( 4) ( 3) ( 2) 9 x y z + + - + + = hoc 2 2 2 4 ( 5) ( 4) ( 4) . 9 x y z + + - + + = 0,5 Cõu 9.a (1,0 Scỏcsth uc Mcú3chsl 3 5 60.A = Scỏcsth uc Mcú4chsl 4 5 120.A = 0,5 A d B H C M N E ( )f t '( )f t t 1 0 + 0 +Ơ 3 2 www.VNMATH.com Scỏcsth uc Mcú5chsl 5 5 120.A = SuyrasphntcaM l 60 120 120 300. + + = im) Cỏctpconca E cútngcỏcphntbng10gm 1 2 3 {1,2,3,4}, {2,3,5}, {1,4,5}.E E E = = = Gi A ltpconcaMmmisthuc A cútngcỏcchsbng10. T 1 E lpcscỏcsthuc A l 4! Tmitp 2 E v 3 E lpcscỏ csthuc A l 3! Suyrasphntca Al 4! 2.3! 36. + = Doúxỏcsutcntớnhl 36 0,12. 300 P = = 0,5 Gis(C)cútõm ( ),I a b bỏnkớnh 0.R > Vỡ(C)iqua A,B nờn IA IB R = = 2 2 2 2 2 2 ( 1) ( 2) ( 4) ( 1) 3 6 ( 3 6) 10 50 65 10 50 65 (1) a b a b R b a I a a R a a R a a - + - = - + - = = - - ỡ ỡ ù ù ị ị ớ ớ = - + = - + ù ù ợ ợ 0,5 Cõu 7.b (1,0 im) K IH CD ^ ti H.Khiú 9 29 3, ( , ) 5 a CH IH d I - + = = D = 2 2 2 (9 29) 9 25 a R IC CH IH - ị = = + = + (2) T(1)v(2)suyra 2 2 2 (9 29) 10 50 65 9 169 728 559 0 25 a a a a a - - + = + - + = 1 43 13 a a = ộ ờ ờ = ờ ở (1 3), 5 43 51 5 61 , 13 13 13 I R I R - = ộ ờ ị ổ ử ờ = ỗ ữ ờ ố ứ ở Suyra 2 2 ( ) :( 1) ( 3) 25C x y - + + = hoc 2 2 43 51 1525 ( ) : . 13 13 169 C x y ổ ử ổ ử - + - = ỗ ữ ỗ ữ ố ứ ố ứ 0,5 Vỡ ( )P // 1 2 ,d d nờn(P)cúcpvt cp 1 1 2 2 (1 11) , (1 21) ( 1 2 3) P u n u u u ỡ = - ù ộ ự ị = = ớ ở ỷ = - - ù ợ uur uur uur uur uur Suyrapt(P)cúdng 2 0.x y z D + + + = ( ) 33 , ( ) 6 6 9 6 DD d M P D = + ộ = = ờ = - ở ( ) : 2 3 0 (1) ( ) : 2 9 0 (2) P x y z P x y z + + + = ộ ị ờ + + - = ở 0,5 Cõu 8.b (1,0 im) Ly 1 (1 31)K d ẻ v 2 (1 3 2)N d - ẻ th vo cỏc phng trỡnh (1) v (2) ta cú ( ) : 2 3 0N P x y z ẻ + + + = nờn 2 ( ) : 2 3 0d P x y z è + + + = .Suy raphngtrỡnh mt phng(P) thamónbitoỏnl( ) : 2 9 0.P x y z + + - = 0,5 Vimi x ẻR vmisnguyờndng n,theonhthcNiutntacú ( ) 0 1 2 1 0 1 . . . ( 1) . . . ( 1) (1 ) . n n n n n n n n n n n n n C x C x C x C C x C x x x x + - + + - = - + + - = - Suyra ( ) 1 1 0 1 2 1 0 0 . . . ( 1) d (1 ) d . n n n n n n n C x C x C x x x x x + - + + - = - ũ ũ 0,5 Cõu 9.b (1,0 im) Hay 1 1 0 1 1 0 0 1 1 ( 1) . (1 ) d (1 ) d 2 3 2 n n n n n n n C C C x x x x n + - - + + = - - - + ũ ũ 1 1 1 1 2 ( 1)( 2)n n n n = - = + + + + ,vimi * .n ẻN Tútacú 2 1 1 3 154 0 11 ( 1)( 2) 156 n n n n n = + - = = + + (vỡ * ).nẻN 0,5 I D H A B C D www.VNMATH.com . )SH ABCD ^ nên · ( ) · 0 , ( ) 30 .SCH SC ABCD = = Trongtamgiác vuông SAD tacó 2 .SA AH AD = 2 2 3 12 4 ; 3 ; 4 a AD AD a HA a HD a Û = Þ = = = 0 . 3 .cot30 3SH HA HD a. = 0,5 Gis(C)cútõm ( ),I a b bỏnkớnh 0.R > Vỡ(C)iqua A, B nờn IA IB R = = 2 2 2 2 2 2 ( 1) ( 2) ( 4) ( 1) 3 6 ( 3 6) 10 50 65 10 50 65 (1) a b a b R b a I a a R a a R a a - + - = - + - = =. = im) Cỏctpconca E cútngcỏcphntbng10gm 1 2 3 {1,2,3,4}, {2,3,5}, {1,4,5}.E E E = = = Gi A ltpconcaMmmisthuc A cútngcỏcchsbng10. T 1 E lpcscỏcsthuc A l 4! Tmitp 2 E v 3 E lpcscỏ csthuc A l 3! Suyrasphntca Al