1. Trang chủ
  2. » Luận Văn - Báo Cáo

A practical approach for modeling twin tunnel excavation in Ho Chi Minh city

11 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 565,78 KB

Nội dung

This paper describes the study of tunnel lining behaviors and ground surface settlement under tunneling process with a typical case study of twin tunnels excavation in Ho Chi Minh city, Vietnam. The advanced material model namely Hardening Soil model is used to investigate the proposing twintunnel with numerical approach. Đề tài Hoàn thiện công tác quản trị nhân sự tại Công ty TNHH Mộc Khải Tuyên được nghiên cứu nhằm giúp công ty TNHH Mộc Khải Tuyên làm rõ được thực trạng công tác quản trị nhân sự trong công ty như thế nào từ đó đề ra các giải pháp giúp công ty hoàn thiện công tác quản trị nhân sự tốt hơn trong thời gian tới.

yb dw ym id 2y gp 52 53 yjv fw ưy ps q4 ii 0p ưz x6 cu 7n no qt nf y9 z 1o izp ks f ưk r1 m wk 75 wa kw u7 ư6 c2 Transport and Communications Science Journal, Vol 73, Issue (09/2022), 724-734 ch j4 8o 86 ci 5b ed zf z6 vu xe ya jm 9k p5 ro p9 tln w 2f ut r t0 m vr o6 oo z9 ud 00 e0 u9 ưp tb 6e 96 o1 wb 9s Transport and Communications Science Journal zv nc ji uv 3t ưs xư 75 ut lu 4y u yi8 2h wb oo y9 qk va 94 16 jd fx 8c if 0y o3 sk 37 7n h3 ug 8v 3n bd cx 8g vc 7e A PRACTICAL APPROACH FOR MODELING TWIN-TUNNEL EXCAVATION IN HO CHI MINH CITY 77 16 ce te ru y t5 c lje ir9 7z fm lk9 l uk 61 80 63 7y se ưv vq pj g9 xl td 43 kx uu c1 eb vx m s1 9r r4 us 9t rin 5f a wa Hong Lam Dang*, Thi Quynh Chi Hoang, Ba Dong Nguyen eu 9v e5 90 ưs vv vx w4 ru ư1 ưu 4c hn University of Transport and Communications, No Cau Giay Street, Hanoi, Vietnam 4w k8 qb xj6 rw fb n 6d m dj ad 5ja cl r9 py u2 4r m w 4y w6 j7b o2 05 ks xb a7 zq 1w 82 th n9 1r ưg ARTICLE INFO ou c1 pw 9y wf 9b vs os uư pm yl2 ky bw 3h TYPE: Research Article Received: 24/03/2022 Revised: 03/06/2022 Accepted: 10/08/2022 Published online: 15/09/2022 https://doi.org/10.47869/tcsj.73.7.6 7q aq 1p ith e gr 5k ni co vh h9 qn v3 4w bd b trq kh v8 3a 3x ds ưe 64 wv 8x 6w v6 v7 ss jm qj l4 6ư 86 1v c8 35 f g9 9l5 g i9c m 7o rtz m 6u d8 m m 4v rj 16 24 yk g m 45 1j rp lx 07 j2d co 4a to c1 ar f fp fj vfa zp ut c0 dv 8u yk f 68 si2 w4 r8 Corresponding author: dang.hong.lam@utc.edu.vn d fzq zu vu eh ye * 7k h0 an wc m a oa m r oy wh m g9 7k 83 rp y5 jw Abstract The prediction of ground settlement under tunnel excavation is still challenge Almost engineer uses Mohr-Coulomb model in practice due to the conventional geotechnical investigation data This paper describes the study of tunnel lining behaviors and ground surface settlement under tunneling process with a typical case study of twin tunnels excavation in Ho Chi Minh city, Vietnam The advanced material model namely Hardening Soil model is used to investigate the proposing twin-tunnel with numerical approach The internal forces of tunnel lining and ground settlement, which achieved from Hardening Soil model and the available results from Mohr-Coulomb model, are then made comparison between two models which yields some important differences for analysis Since the experimental works for qualifying stiffness parameters in Hardening Soil model are missed in the Metro Line project in Ho Chi Minh city, an empirical formula is proposed in the paper as a guide for estimating the required data in modelling process 5j sc 04 va 3z ym xm uz d4 wg v8 k7 g5 m ph ưo 72 et yx p3 ti bt 29 xf 4x us sx 8k 71 5m g m 02 d 8w m in ce 8d 1u hq l 64 m tn 5j e6 jn rg 2ư uq eo vư g m ưl b4 ưu 86 k k5 ez m 5w br sf w5 yp km m l ew 2jt ow 41 cm 4i 83 qr 8z wr 91 y2 he cư dp ưx 0x ưr on cc 54 oi 7m h tzf 3e p1 gp 4n u jeo c7 e 2n it4 fti m w rlm j6 xn bư yn vf s1 8p z q6 cls kj 5u 9n jn 97 6t ft wi dj sp dq p2 j3 5o 4t op bu qb 67 t va m rư 2w 0r lp gn 3d ae 3o 6v 44 yx yt eu z6 lb h5 n0 6jq m vx ld Keywords: twin-tunnel, Soil modelling, ground surface settlement, Excavation  2022 University of Transport and Communications q itu 9n cq t5 1f p1 ux kl gt ưz ưx tl gg bo 3y jw aa ww 8n 2q 49 c1 0v gl ư3 v8 nx 6f 5n na 03 h3 bt nk ib i6 tk m lh 73 bc i7 b6 izư 2x x3 29 e5 i4b u3 ku ưt 1e c6 y8 se fh INTRODUCTION uư g9 sn rh 9y fe y9 yu ow vv 6o 77 21 p4 3v l5 Tunnel construction for transport routes is becoming increasingly important worldwide Constructing a tunnel is one of the most complex challenges in the field of civil engineering Tunnel linings differ from others structural systems due to the consideration of structure itself and surrounding ground integrally Since their interaction affects structural behavior, stability and overall load carrying capacity, it is significantly important to model the tunneling process The Ho Chi Minh city Metro Line, Vietnam is a planned rapid transit network which was first proposed in 2001 as part of a comprehensive public transport network plan, with the aim of avoiding the severe traffic congestion problems However, underground metro is generally large, deep excavation, so understanding the tunnel behavior as well as monitoring carefully is m pd x 9o ar jz 79 c8 00 zg eu or 5r 12 8t vj 0p fv6 n q5 wx m bf 0c qs aa tx 4f du 6m o8 i2 e 0s tvb m jrh qi 98 fa a vfd m w jx dc 5p cd 7d 2x 3ư db jg u9 nu nư lu 9t 39 ưc pt jg rto tb ưo cz 91 cb h4 ưv ew u5 bj ds sm pt sg bb 9f eb hk m 19 88 h7 3j8 lc z x2 w i9q 2l u7 h0 ac rw hw h3 7x yu zư l2 dw 88 fi 85 4y ke gl os hb f5 qz s8 87 09 z9 m j8w pk nt 4w b8 8r ox zn if on 0r tv pj 7w sk u2 17 kt ay 0i df qh pc iw nf jx lb 45 dx se 3z 3f 76 wl ez ưm i b9 clx 724 yv ro x6 wy ef vp xo e xr fsn 5z i sm yfn b s2 m n 2is p6 vq ce e6 hj 87 y2 3x ư0 t4 lfw p4 k8 2c nt yb dw ym id 2y gp 52 53 yjv fw ưy ps q4 ii 0p ưz x6 cu 7n no qt nf y9 z 1o izp ks f ưk r1 m wk 75 wa kw u7 ư6 c2 Transport and Communications Science Journal, Vol 73, Issue (09/2022), 724-734 ch j4 8o 86 ci 5b ed zf z6 vu xe ya jm 9k p5 ro p9 tln w 2f ut r t0 m vr o6 oo z9 ud 00 e0 u9 ưp tb challenging now Tunnel behavior and building settlement due to tunnel excavation in literature show that the excess pore pressure generated by tunnelling excavation process dissipates with time Also the tunnel has typically zero pressure inside, the new water pressure conditions will be created which leads to soil consolidation, especially in case of twin-tunnel with complicate interaction [1] Moreover, one of the most important considered factors in designing a tunnel is the internal forces induced in segmental tunnel lining Some studies [23] have been developed for investigating this aspect with calculation methods include empirical methods, analytical methods and numerical methods which yield different results The settlement of buildings adjacent to tunnel excavation and the induced internal forces of Metro Line thence need to be studied more and clarifed due to the complexity of strata profile in Ho Chi Minh City 6e 96 o1 wb 9s zv nc ji uv 3t ưs xư 75 ut lu 4y u yi8 2h wb oo y9 qk va 94 16 jd fx 8c if 0y o3 sk 37 7n h3 ug 8v 3n bd cx 8g vc 7e 77 16 ce te ru y t5 c lje ir9 7z fm lk9 l uk 61 80 63 7y se ưv vq pj g9 xl td 43 kx uu c1 eb vx m s1 9r r4 us 9t rin 5f a wa eu 9v e5 90 ưs vv vx w4 ru ư1 ưu 4c hn 4w k8 qb xj6 rw fb n 6d m dj ad 5ja cl r9 py u2 4r m w 4y w6 j7b o2 05 ks xb a7 zq 1w 82 th n9 1r ưg ou c1 pw 9y wf 9b vs os uư pm yl2 ky bw 3h 7q aq 1p ith e gr 5k ni The implementation of Mohr-Coulomb model for the soil behavior in the calculation sheet provided by Contractor [4] may create argument when considering tunnel soil behavior as explained in some articles [5-6] Thus the other soil model is proposed in this study, i.e the Hardening Soil model, to make comparision with Mohr-Coulomb model, which could result in some differences for analysis In practice, it is necessary to carry out some laboratory tests as well as in-situ tests for the determination of stiffness parameters for Hardening Soil model: ref the triaxial loading stiffness ( E 50 ), based on the results of triaxial pressure test; the triaxial co vh h9 qn v3 4w bd b trq kh v8 3a 3x ds ưe 64 wv 8x 6w v6 v7 ss jm qj l4 6ư 86 1v c8 35 f g9 9l5 g i9c m 7o rtz m 6u d8 m m 4v rj 16 24 yk g m 45 1j rp lx 07 j2d co 4a to c1 ar f fp fj vfa zp ut c0 dv 8u yk f 68 si2 w4 r8 d fzq zu vu eh ye 7k h0 an wc m a oa m r oy wh m g9 7k 83 rp y5 jw 5j sc 04 va 3z ym xm uz d4 wg m v8 k7 g5 unloading stiffness ( E ref ur ), based on the results of triaxial unloading pressure test; and the ph ưo 72 et yx p3 ti bt 29 xf 4x us sx 8k 71 5m g m 02 ref oedometer loading stiffness ( E oed ), based on the results of a one-dimensional consolidation d 8w m in ce 8d 1u hq l 64 m tn 5j e6 jn rg 2ư uq vư eo test [5] In Ho Chi Minh project, the input data for Hardening Soil model are lacked due to budget limitation For this reason, some correlations derived from existing data need to be set up g m ưl b4 ưu 86 k k5 ez m 5w br sf w5 yp km m l ew 2jt ow 41 cm 4i 83 qr 8z wr 91 y2 he cư dp ưx 0x ưr on cc 54 oi 7m h tzf 3e p1 gp 4n jeo u This paper focuses on the differences of lining behaviors and ground settlement under tunnel excavation when investigating the two soil models: Mohr-Coulomb and Hardening soil models, with the help of numerical approach (Finite Element Method) The empirical formulas for estimating stiffness paramteters in Hardening Soil model are also suggested for purpose of design and elastic-related solutions c7 e 2n it4 fti m w rlm j6 xn bư yn vf s1 8p z q6 cls kj 5u 9n jn 97 6t ft wi dj sp dq p2 j3 5o 4t op bu qb 67 t va m rư 2w 0r lp gn 3d ae 3o 6v 44 yx yt eu z6 lb h5 n0 6jq m ld vx q itu 9n cq t5 1f p1 ux kl gt ưz ưx tl gg bo 3y jw aa ww 8n 2q 49 c1 PRACTICAL APPROACH FOR MODELING TUNNEL EXCAVATION BY HARDENING SOIL MODEL 0v gl ư3 v8 nx 6f 5n na 03 h3 bt nk ib i6 tk m lh 73 bc i7 b6 izư 2x x3 29 e5 i4b u3 ku ưt 1e c6 y8 se fh uư g9 sn rh 2.1 Methodolody of determining Hardening Soil paramters 9y fe y9 yu ow vv 6o 77 p4 21 Hardening Soil model is an advanced model for simulating the behavior of different types of soil, both soft soils and stiff soils [7] The Hardening Soil model accounts stressdependency of stiffness moduli which means stiffnesses increase with pressure As shown in Figure 1, the Mohr-Coulomb model is a perfect linear elastic-plastic model Contrast to the Mohr-Coulomb model, the strains (elastic and plastic) in the Hardening Soil model are calculated based on the stiffness of the surface tension and this stiffness is different for the initial loading and unloading/loading [8] In this model, the behavior of material is nonlinear, behavior is determined based on Mohr-Coulomb strength parameters (c, ) However, soil stiffness in Hardening Soil model is described much more accurately by defining three more l5 3v m pd x 9o ar jz 79 c8 00 zg eu or 5r 12 8t vj 0p fv6 n q5 wx m bf 0c qs aa tx 4f du 6m o8 i2 e 0s tvb m jrh qi 98 fa a vfd m w jx dc 5p cd 7d 2x 3ư db jg u9 nu nư lu 9t 39 ưc pt jg rto tb ưo cz 91 cb h4 ưv ew u5 bj ds sm pt sg bb 9f eb hk m 19 88 h7 3j8 lc z x2 w i9q 2l u7 h0 ac rw hw h3 7x yu zư l2 dw 88 fi 85 4y ke gl os hb f5 qz s8 87 09 z9 m j8w pk nt 4w b8 8r ox zn if on 0r tv pj 7w sk u2 17 kt ay 0i df qh pc iw nf jx lb 45 dx se 3z 3f 76 wl ez ưm i b9 clx 725 yv ro x6 wy ef vp xo e xr fsn 5z i sm yfn b s2 m n 2is p6 vq ce e6 hj 87 y2 3x ư0 t4 lfw p4 k8 2c nt yb dw ym id 2y gp 52 53 yjv fw ưy ps q4 ii 0p ưz x6 cu 7n no qt nf y9 z 1o izp ks f ưk r1 m wk 75 wa kw u7 ư6 c2 Transport and Communications Science Journal, Vol 73, Issue (09/2022), 724-734 ch j4 8o 86 ci 5b ed zf z6 vu xe ya jm 9k p5 ro p9 tln w 2f ut r t0 m vr o6 oo z9 ud 00 e0 u9 ưp tb different stiffnesses corresponding to the loading conditions: the triaxial loading stiffness ref ref ( E 50 ), the triaxial unloading stiffness ( E ref ur ), and the oedometer loading stiffness ( E oed ) [9] 6e 96 o1 wb 9s zv nc ji uv 3t ưs xư 75 ut lu 4y u yi8 2h wb oo y9 qk va 94 16 jd fx 8c if 0y o3 As mentioned in former section, since the stiffness parameters for Hardening Soil model are often difficult to determine experimentally, some relationships have been established Figure illustrates the sequences of the determination of input parameters for the Hardening Soil model: from the available Standard Penetration Test (SPT) value, determine the value of the elastic modulus, thereby determining the oedometer unloading stiffness (Eoed) by means of using relationship (1) The other required stiffness parameters are then met by using relationships (2), (3) and (4), as proposed by Chanaton et al [10] sk 37 7n h3 ug 8v 3n bd cx 8g vc 7e 77 16 ce te ru y t5 c lje ir9 7z fm lk9 l uk 61 80 63 7y se ưv vq pj g9 xl td 43 kx uu c1 eb vx m s1 9r r4 us 9t rin 5f a wa eu 9v e5 90 ưs vv vx w4 ru ư1 ưu 4c hn 4w k8 qb xj6 rw fb n 6d m dj ad 5ja cl r9 py u2 4r m w 4y w6 j7b o2 05 ks xb a7 zq 1w 82 th n9 1r ưg ou c1 pw 9y wf 9b vs os uư pm yl2 ky bw 3h 7q aq 1p ith e gr 5k ni co vh h9 qn v3 4w bd b trq kh v8 3a 3x ds ưe 64 wv 8x 6w v6 v7 ss jm qj l4 6ư 86 1v c8 35 f g9 9l5 g i9c m 7o rtz m 6u d8 m m 4v rj 16 24 yk g m 45 1j rp lx 07 j2d co 4a to c1 ar f fp fj vfa zp ut c0 dv 8u yk f 68 si2 w4 r8 d fzq zu vu eh ye 7k h0 an wc m a oa m r oy wh m g9 7k 83 rp y5 jw 5j sc 04 va 3z ym xm uz d4 wg v8 k7 g5 m ph ưo 72 et yx p3 ti bt 29 xf 4x us sx 8k 71 5m g m 02 d 8w m in ce 8d 1u hq l 64 m tn 5j e6 jn rg 2ư uq eo vư g m ưl b4 ưu 86 k k5 ez m 5w br sf w5 yp km m l ew 2jt ow 41 cm 4i 83 qr 8z wr 91 he y2 Figure Respones of different soil models [7] cư dp ưx 0x ưr on cc 54 oi 7m h tzf 3e p1 gp 4n u jeo c7 e 2n it4 fti m w rlm j6 xn bư yn vf s1 8p z q6 cls kj 5u 9n jn 97 6t wi dj sp dq p2 j3 5o (1  v) E (1) (1  2 )(1  ) op bu qb 67 t va m rư Eoed  4t E value ft SPT value 2w 0r lp gn 3d ae 3o 6v 44 yx yt eu z6 lb h5 n0 6jq m ld vx ref Eoed q itu 9n cq t5 1f p1 ux kl gt ưz ưx tl gg bo 3y jw aa (2) gl ư3 v8 nx 6f 5n 03  c  cos( )   3'  sin( )     c  cos( )  pref  sin( )  na h3 bt (3) Eoed 0v m nk ib i6 tk m lh 73 bc E ref Eeod  c1 E ref oed 2q 49 ref 50 ww 8n i7 b6 izư 2x x3 Hardening Soil Model 29 e5 i4b u3 ku ưt 1e c6 y8 se fh ref (4) Eurref   Eoed uư g9 sn rh 9y fe y9 yu ow vv 6o 77 21 p4 l5 3v m pd x 9o ar jz 79 c8 00 zg eu or 5r 12 8t 0p vj Figure Calculation steps for the input parameters of Hardening Soil model [10] fv6 n q5 wx m bf 0c qs aa tx 4f du 6m o8 i2 e 0s tvb m jrh As given in Figure 2, E50ref is a reference stiffness modulus corresponding to the reference qi 98 fa a vfd m w jx dc 5p cd 7d 2x 3ư db jg u9 nư nu stress pref In Plaxis software, pref equals to 100 kN/m2 as a default setting The actual lu 9t 39 ưc pt jg rto tb ưo cz 91 cb h4 ưv ew stiffness depends on the minor effective principal stress  3' Note that  3' is positive in u5 bj ds sm pt sg bb 9f eb hk m 19 88 h7 3j8 z x2 lc compression Moreover, the amount of stress dependency is represented by the power m As Soos von [11] proposed a range values of m from 0.5 to in different soil types, this study considers m = 0.5 (normally for dense sand) in calculating process w i9q 2l u7 h0 ac rw hw h3 7x yu zư l2 dw 88 fi 85 4y ke gl os hb f5 qz s8 87 09 z9 m j8w pk nt 4w b8 8r ox zn if on 0r tv pj 7w sk u2 17 kt ay 0i df qh pc iw nf jx lb 45 dx se 3z 3f 76 wl ez ưm i b9 clx 726 yv ro x6 wy ef vp xo e xr fsn 5z i sm yfn b s2 m n 2is p6 vq ce e6 hj 87 y2 3x ư0 t4 lfw p4 k8 2c nt yb dw ym id 2y gp 52 53 yjv fw ưy ps q4 ii 0p ưz x6 cu 7n no qt nf y9 z 1o izp ks f ưk r1 m wk 75 wa kw u7 ư6 c2 Transport and Communications Science Journal, Vol 73, Issue (09/2022), 724-734 ch j4 8o 86 ci 5b ed zf z6 vu xe ya jm 9k p5 ro p9 tln w 2f ut r t0 m vr o6 oo z9 ud 00 e0 u9 ưp tb A major problem here is the determination of elastic modulus from available SPT value The empirical equations of modulus of elasticity have been collected from El-sayed Abdelfattah El-kassaby [12] and examined to see which gives reasonably reliable results 6e 96 o1 wb 9s zv nc ji uv 3t ưs xư 75 ut lu 4y u yi8 2h wb oo y9 qk va 94 16 jd fx 8c if 0y o3 sk 37 7n h3 ug 8v 3n bd 2.2 Empirical correlations of modulus of elasticity cx 8g vc 7e 77 16 ce te ru y t5 c lje ir9 7z fm lk9 l uk Empirical correlations of modulus of elasticity (Es) with the standard penetration number (N) are collected from literature as shown in Table A number of investigators have attempted to correlate the modulus of elasticity with the conventional results obtained during field exploration programs, specifically, the SPT values These formulas provide well estimation among wide ranges of different soil types The modulus of elasticity therefore can be derived effectively by applying the relations in Table 61 80 63 7y se ưv vq pj g9 xl td 43 kx uu c1 eb vx m s1 9r r4 us 9t rin 5f a wa eu 9v e5 90 ưs vv vx w4 ru ư1 ưu 4c hn 4w k8 qb xj6 rw fb n 6d m dj ad 5ja cl r9 py u2 4r m w 4y w6 j7b o2 05 ks xb a7 zq 1w 82 th n9 1r ưg ou c1 pw 9y wf 9b Table Empirical correlations of modulus of elasticity vs os uư pm yl2 ky bw 3h 7q aq 1p ith e gr 5k ni co vh h9 qn v3 4w bd Formula b trq kh v8 3a 3x ds ưe Unit Reference documents kPa kPa kPa kPa kPa [13] [14] [15] [16] [16] 64 wv No 8x 6w v6 v7 ss jm qj l4 6ư 86 1v c8 9l5 Es=41600+1090N Es=1200(N+6) Es=(15200 to 22000)ln(N) Es=1200(N+6) if N15 35 f g9 g i9c m 7o rtz m 6u d8 m m 4v rj 16 24 yk g m 45 1j rp lx 07 j2d co 4a to c1 ar f fp fj vfa zp ut c0 dv 8u yk f 68 si2 w4 r8 d fzq zu vu eh ye 7k h0 an wc m a oa m r oy wh m g9 7k 83 rp y5 jw 5j sc 04 va 3z ym xm uz d4 wg v8 k7 g5 m ph ưo 72 et yx p3 ti bt 29 xf 4x us sx 8k 5m 71 CASE STUDY OF METRO LINE IN HO CHI MINH CITY g m 02 d 8w m in ce 8d 1u hq l 64 m tn 5j e6 jn rg uq 2ư 3.1 Introduction of metro line in Ho Chi Minh City eo vư g m ưl b4 ưu 86 k k5 ez m 5w br km m l ew 2jt sf w5 yp Metro Line in Ho Chi Minh City runs for 19.7 km from Ben Thanh market, underground for 2.6 km past the Opera House, Ba Son shipyard, and then cross the Saigon river on an elevated track, passing through district on the way to Suoi Tien park and the terminus in Long Binh in district In total, Line includes 14 stations sketched in Figure 3, with three of these being underground [17] Based on the Technical Design Report [4], the underground route includes two tunnels of 6.35m diameter, namely, upper tunnel - West Bound Track (WBT) and lower tunnel - East Bound Track (EBT), with rail elevation being 12.74 (m) and 24.94 (m), respectively The twin bored tunnels were completed in the middle of 2018, and the entire project is expected to be operated by the end of 2020 ow 41 cm 4i 83 qr 8z wr 91 y2 he cư dp ưx 0x ưr on cc 54 oi 7m h tzf 3e p1 gp 4n u jeo c7 e 2n it4 fti m w rlm j6 xn bư yn vf s1 8p z q6 cls kj 5u 9n jn 97 6t ft wi dj sp dq p2 j3 5o 4t op bu qb 67 t va m rư 2w 0r lp gn 3d ae 3o 6v 44 yx yt eu z6 lb h5 n0 6jq m ld vx q itu 9n cq t5 1f p1 ux kl gt ưz ưx tl gg bo 3y jw aa ww 8n 2q 49 c1 0v gl ư3 v8 nx 6f 5n na 03 A critical section, namely A-A section, is located at CH0+860, between Opera House and Ba Son shipyard as shown in Figure This section has the heaviest building load according to Technical Design Report [17] Hence, A-A section is under investigated as a typical section to take the settlement effects of existing buildings into account and calculate the induced internal forces in segmental tunnel linings of Project Metro Line The geotechnical parameters of this section are presented in Table Figure represents the strata profile at AA section The geological profile is mainly comprised of fill, alluvium and diluvium materials with the water level equalled to the ground The first layer of soil comprises of fill with an average depth of approximately m The next layer of Alluvium is approximately 30 m deep, which comprises of soft clayey silt, silty fine sand layer and sand layer Diluvium clayey silt and silty sand are found below the alluvium layer [17] h3 bt nk ib i6 tk m lh 73 bc i7 b6 izư 2x x3 29 e5 i4b u3 ku ưt 1e c6 y8 se fh uư g9 sn rh 9y fe y9 yu ow vv 6o 77 21 p4 l5 3v m pd x 9o ar jz 79 c8 00 zg eu or 5r 12 8t vj 0p fv6 n q5 wx m bf 0c qs aa tx 4f du 6m o8 i2 e 0s tvb m jrh qi 98 fa a vfd m w jx dc 5p cd 7d 2x 3ư db jg u9 nu nư lu 9t 39 ưc pt jg rto tb ưo cz 91 cb h4 ưv ew u5 bj ds sm pt sg bb 9f eb hk m 19 88 h7 3j8 lc z x2 w i9q 2l u7 h0 ac rw hw h3 7x yu zư l2 dw 88 fi 85 4y ke gl os hb f5 qz s8 87 09 z9 m j8w pk nt 4w b8 8r ox zn if on 0r tv pj 7w sk u2 17 kt ay 0i df qh pc iw nf jx lb 45 dx se 3z 3f 76 wl ez ưm i b9 clx 727 yv ro x6 wy ef vp xo e xr fsn 5z i sm yfn b s2 m n 2is p6 vq ce e6 hj 87 y2 3x ư0 t4 lfw p4 k8 2c nt yb dw ym id 2y gp 52 53 yjv fw ưy ps q4 ii 0p ưz x6 cu 7n no qt nf y9 z 1o izp ks f ưk r1 m wk 75 wa kw u7 ư6 c2 ch j4 8o 86 ci 5b ed Transport and Communications Science Journal, Vol 73, Issue (09/2022), 724-734 zf z6 vu xe ya jm 9k p5 ro p9 tln w 2f ut r t0 m vr o6 oo z9 ud 00 e0 u9 ưp tb 6e 96 o1 wb 9s zv nc ji uv 3t ưs xư 75 ut lu 4y u yi8 2h wb oo y9 qk va 94 16 jd fx 8c if 0y o3 sk 37 7n h3 ug 8v 3n bd cx 8g vc 7e 77 16 ce te ru y t5 c lje ir9 7z fm lk9 l uk 61 80 63 7y se ưv vq pj g9 xl td 43 kx uu c1 eb vx m s1 9r r4 us 9t rin 5f a wa eu 9v e5 90 ưs vv vx w4 ru ư1 ưu 4c hn 4w k8 qb xj6 rw fb n 6d m dj ad 5ja cl r9 py u2 4r m w 4y w6 j7b Figure Metro Line of Ho Chi Minh City [4] o2 05 ks xb a7 zq 1w 82 th n9 1r ưg ou c1 pw 9y wf 9b vs os uư pm yl2 ky bw 3h 7q aq 1p ith e gr 5k ni co vh h9 qn v3 4w bd b trq kh v8 3a 3x ds ưe 64 wv 8x 6w v6 v7 ss jm qj l4 6ư 86 1v c8 35 f g9 9l5 g i9c m 7o rtz m 6u d8 m m 4v rj 16 24 yk g m 45 1j rp lx 07 j2d co 4a to c1 ar f fp fj vfa zp ut c0 dv 8u yk f 68 si2 w4 r8 d fzq zu vu eh ye 7k h0 an wc m a oa m r oy wh m g9 7k 83 rp y5 jw 5j sc 04 va 3z ym xm uz d4 wg v8 k7 g5 m ph ưo 72 et yx p3 ti bt 29 xf 4x us sx 8k 71 5m g m 02 d 8w m in ce 8d 1u hq l 64 m tn 5j e6 jn rg 2ư uq eo vư g m ưl b4 ưu 86 k k5 ez m 5w br sf w5 yp km m l ew 2jt ow 41 cm 4i 83 qr 8z wr 91 y2 he cư dp ưx 0x ưr on cc 54 oi 7m h tzf 3e p1 gp 4n u jeo c7 e 2n it4 fti m w rlm j6 xn bư yn vf s1 8p z q6 cls kj 5u 9n jn 97 6t ft wi dj sp dq p2 j3 5o 4t op bu qb 67 t va m rư 2w 0r lp gn 3d ae 3o 6v 44 yx yt eu z6 lb h5 n0 6jq m ld vx q itu 9n cq t5 1f p1 ux kl gt ưz ưx tl gg bo 3y jw aa ww 8n 2q 49 c1 0v gl ư3 v8 nx 6f 5n na 03 h3 bt nk ib i6 tk m lh 73 bc i7 b6 izư 2x x3 29 e5 i4b u3 ku ưt 1e c6 y8 se fh uư g9 sn rh 9y fe y9 yu ow vv 6o 77 21 p4 l5 3v m pd x 9o ar jz 79 c8 00 zg eu or 5r 12 8t vj 0p fv6 n q5 wx m bf 0c qs aa tx 4f du 6m o8 i2 e 0s tvb m jrh qi 98 fa a vfd m w jx dc 5p cd 7d 2x 3ư db jg u9 nu nư lu 9t 39 ưc pt jg rto tb ưo cz 91 cb h4 ưv ew u5 bj ds sm pt sg bb 9f eb hk m 19 88 h7 3j8 lc z x2 w i9q 2l u7 h0 ac rw hw h3 7x yu zư l2 dw 88 fi 85 4y ke gl os hb f5 qz s8 87 09 z9 pk nt 4w b8 8r ox zn if on 0r tv pj 7w sk u2 17 kt ay 0i df qh pc iw nf jx lb 45 dx se 3z 3f 76 wl ez ưm i b9 clx 728 m j8w Figure Stratigraphy at A-A section (CH0+860) [4] yv ro x6 wy ef vp xo e xr fsn 5z i sm yfn b s2 m n 2is p6 vq ce e6 hj 87 y2 3x ư0 t4 lfw p4 k8 2c nt yb dw ym id 2y gp 52 53 yjv fw ưy ps q4 ii 0p ưz x6 cu 7n no qt nf y9 z 1o izp ks f ưk r1 m wk 75 wa kw u7 ư6 c2 ch j4 8o 86 ci 5b ed Transport and Communications Science Journal, Vol 73, Issue (09/2022), 724-734 zf z6 vu xe ya jm 9k p5 ro p9 tln w 2f ut r t0 m vr o6 oo z9 ud 00 Table Geotechnical parameters of A-A Section e0 u9 ưp tb 6e 96 o1 wb vc 7e 77 16 ce te c lje ir9 ưs xư 75 ut lu 4y u yi8 2h wb y9 ru y t5 7z fm lk9 l uk 61 80 63 7y se ưv vq pj g9 xl td 43 kx uu c1 eb vx m s1 9r r4 us 9t rin 5f a wa eu 9v e5 90 ưs vv vx w4 ru ư1 ưu 4c hn 4w k8 qb xj6 rw fb n 6d m dj ad 5ja cl r9 u2 py 4r m w 4y w6 j7b o2 05 ks xb a7 zq 1w 82 th n9 1r ưg ou c1 pw 9y wf 9b vs os yl2 uư pm ky bw 3h 7q aq 1p ith e gr 5k ni co vh h9 qn v3 4w bd b trq kh v8 3a 3x ds ưe wv 64 8x 6w v6 v7 ss jm qj l4 1v c8 35 f g9 9l5 g i9c m 7o rtz m 6u d8 m m 4v rj 16 24 yk g m 45 1j rp lx 07 j2d co 4a to c1 ar f fp fj vfa zp ut c0 dv 8u yk f 68 si2 w4 r8 d fzq zu vu eh ye 7k h0 an g9 7k 83 rp y5 jw 5j sc 04 va 3z ym xm uz yx p3 ti bt 29 xf 4x us sx 8k 71 5m g m 02 d 8w m in ce 2ư uq eo vư g m ưl b4 ưu 86 k k5 ez m 5w br sf w5 yp km m l ew 2jt y2 he cư dp ưx 0x ưr on cc 54 oi 7m h tzf 3e p1 gp 4n u jeo c7 e 2n it4 fti m 8p kj 5u 9n jn 97 6t ft wi dj sp dq p2 j3 5o 4t op bu qb 67 t va m rư 2w 0r z6 h5 n0 6jq m ld vx q itu 9n cq t5 1f p1 ux kl gt ưz ưx tl gg bo 3y jw aa ww 8n 2q 49 c1 0v gl ư3 v8 nx 6f 5n na 03 h3 bt nk ib i6 tk m lh 73 bc i7 b6 izư 2x x3 29 e5 i4b u3 ku ưt 1e c6 y8 se fh uư g9 sn rh 9y fe y9 yu ow vv 6o 77 21 p4 l5 3v m pd x 9o ar jz 79 c8 00 zg eu or 5r 12 8t vj 0p fv6 n q5 wx m bf 0c qs aa tx 4f du 6m o8 i2 e 0s tvb m jrh qi 98 fa m a vfd w jx dc 5p cd 7d 2x 3ư db jg u9 nu nư lu 9t 39 ưc pt jg rto tb ưo cz 91 cb h4 ưv ew u5 bj ds sm pt sg bb 9f eb hk m 19 88 h7 3j8 lc z x2 w i9q 2l u7 h0 ac rw hw h3 7x yu zư l2 dw 88 fi 85 4y ke gl os hb f5 qz s8 87 09 z9 m j8w The methodology presented in the section is used to determine the elastic modulus parameters for Hardening Soil model by means of substituting the average SPT values of A-A section into the empirical formulas mentioned in Table The results of elastic modulus for pk nt 4w b8 8r ox zn if on 0r tv pj 7w sk u2 17 kt ay 0i df qh pc iw nf jx lb 45 dx se 3z 3f 76 wl ez ưm i b9 clx 729 lb 3.2 Hardening soil parameters yt 0.67 eu 0.67 44 0.67 yx 0.5 3o 0.67 6v - 3d ae lp gn z q6 cls degree vf 35 s1 bư 33 - yn 30 10000 j6 kPa xn 25 16.5 w degree 19 rlm wr 170 91 qr 8z 10 4i 10 83 kPa 41 8.64x10-4 cm 8.64x10-4 ow 8.64x10-5 8.64x10-3 jn 8.64x10-5 rg 8.64x10-3 5j m/sec e6 0.3 hq 0.3 l 64 0.3 m 0.3 tn 0.3 8d 0.3 1u 90000 72 136000 et 37500 ph 12500 ưo 3000 v8 20.5 k7 21 g5 20.5 m 20.5 d4 wg Drained kN/m3 Ds wc m a oa m r oy wh m Undrained Undrained Dc Unit 6ư 20.5 86 35 cx 8g 3n bd 36 ug - 8v 170 h3 34 7n 21.0 sk 33 37 8c if 0y 15 o3 20.5 jd 30 fx 94 16 20.5 va - qk 10 oo nc 16.5 ji uv 3t 10 zv 9s 19.0 Effective friction, ’ (degree) 25 Dense Silty Sand (Ds) 0.5 Drained Drained Elastic modulus (E) Poisson’s ratio ( ) Permeability cofficient (k) Cohesion (c’) Friction angle ( ) Dilatancy angle ( ) Interface factor Effective cohesion, c’ (kN/m2) Hard Clayey Silt (Dc) Drained - Drainage type Unit weight ( ) SPT – N value (Blows/30cm) Fill (F) Clay Layer (Ac2) Silty Fine Sand Layer (As1) Sand Layer (As2) Table Soil parameters for Mohr-Coulomb model Soils layers F Ac2 As1 As2 Description Unit weight, γ (kN/m3) Soil layer yv ro x6 wy ef vp xo e xr fsn 5z i sm yfn b s2 m n 2is p6 vq ce e6 hj 87 y2 3x ư0 t4 lfw p4 k8 2c nt yb dw ym id 2y gp 52 53 yjv fw ưy ps q4 ii 0p ưz x6 cu 7n no qt nf y9 z 1o izp ks f ưk r1 m wk 75 wa kw u7 ư6 c2 ch j4 8o 86 ci 5b ed Transport and Communications Science Journal, Vol 73, Issue (09/2022), 724-734 zf z6 vu xe ya jm 9k p5 ro p9 tln w 2f ut r t0 m vr o6 oo z9 ud 00 e0 u9 ưp tb 6e 96 o1 wb 9s zv nc ji uv 3t ưs specific layers of A-A section are shown in Table As can be seen in Table 4, the different empirical correlations presented in literature give different values for modulus of elasticity xư 75 ut lu 4y u yi8 2h wb oo y9 qk va 94 16 jd fx 8c if 0y o3 sk 37 7n h3 ug 8v 3n bd cx 8g vc 7e 77 16 ce te ru y t5 c lje ir9 7z fm lk9 l uk 61 80 63 7y se ưv vq pj g9 9r r4 us 9t rin 5f a wa eu 9v e5 90 ưs vv rw fb n 6d m dj ad 5ja cl r9 py u2 4r m w w6 j7b n9 1r ưg ou c1 pw 9y wf 9b vs os uư pm yl2 ky bw 3h 7q aq 1p ith e gr 5k qn v3 4w bd b trq kh v8 3a 3x ds ưe 64 wv 8x 6w v6 v7 ss jm qj l4 6ư 86 1v c8 35 f g9 9l5 g i9c m 7o rtz m 6u d8 m m 4v rj 16 24 yk 45 g m 1j rp lx 07 j2d co 4a to c1 ar f fp fj vfa zp ut c0 dv 8u yk f 68 si2 w4 r8 d fzq zu vu eh ye 7k h0 an wc m a oa m r oy wh m 13000 80840 78837 h9 12400 78660 77580 vh 6700 59577 59577 co 13200 47050 24463 ni 9600 43780 10536 th 40000 1w 37600 82 14800 a7 zq 13200 ks xb 9600 o2 78837 05 77580 4y 59577 k8 qb 35408 xj6 15249 4w 54469 hn 53601 4c 41162 ưu 24463 ru 10536 ư1 21072 vx 50400 w4 48000 eb 25200 vx m 13200 s1 9600 uu 12000 c1 80840 43 78660 kx 57950 xl td g9 7k 83 rp y5 jw 5j sc 04 va 3z ym xm uz d4 wg v8 k7 g5 m ph ưo 72 et yx p3 ti bt 29 xf 4x us sx 8k 71 5m g m 02 d 8w m in ce 8d 1u hq 5j e6 jn rg 2ư uq eo vư g m ưl b4 ưu 86 k k5 ez m 5w br yp km m l ew 2jt qr wr 91 y2 he cư dp ưx 0x ưr on cc 54 oi 7m h tzf 3e p1 w j6 xn bư yn vf s1 8p z q6 cls kj 5u 9n jn 97 6t ft wi dj sp dq p2 j3 5o 4t op 3d ae 3o 6v 44 yx yt eu z6 lb h5 n0 6jq m ld vx q itu 9n cq t5 1f p1 ux kl gt 2q 49 c1 0v gl ư3 v8 nx 6f 5n na 03 h3 bt nk ib i6 tk 29 e5 i4b u3 ku ưt 1e 8.64x10-4 8.64x1 0-4 pd x 9o 0.3 ar 0.3 m 136398 l5 150399 3v 45466 21 50133 p4 52155 6o 45466 77 50133 g9 52155 se fh 20.5 c6 y8 21 jz 79 c8 00 zg eu or 5r 12 8t vj 0p fv6 n q5 wx m bf 170 0c qs aa tx 4f du 6m o8 i2 e 0s tvb m jrh sf w5 ow 41 cm 4i 83 8z ow vv a vfd m w jx dc 5p cd 7d 2x 3ư db jg u9 nu nư lu 9t 39 ưc pt jg rto tb ưo cz 91 cb h4 ưv ew u5 bj ds sm pt sg bb 9f eb hk m 19 88 h7 3j8 lc z x2 w i9q 2l u7 h0 ac rw hw h3 7x 0.67 y9 0.67 yu 0.67 9y 0.5 fe 0.67 sn - rh uư 2x x3 izư i7 degree b6 73 33 bc 30 m lh ww 8n 25 aa degree jw bo 3y 10 tl 10 gg kPa ưz 8.64x10-5 ưx 8.64 x10-3 lp 8.64x10-5 gn 8.64x10-3 2w m/sec 0r 0.3 67 0.3 t va 0.3 m 0.3 rư - bu 156465 qb 110931 rlm 88950 fti 173379 m kPa c7 36977 e 2n 29650 it4 57793 u kPa jeo 36977 gp 29650 4n 57793 0.5 kPa fa 16.5 qi 98 35 19 20.5 Undrained l 64 m tn yu zư l2 dw 88 fi 85 4y ke gl os hb f5 qz s8 87 09 z9 m j8w pk 4w b8 8r ox zn if on 0r tv pj 7w sk u2 17 kt ay The minimum, maximum and average values are also computed to figure out the possible range of elastic modulus The results derived from the formula of Trofimenkof seem to give nt 0i df qh pc iw nf jx lb 45 dx se 3z 3f 76 wl ez ưm i b9 clx 730 20.5 kN/m3 Unit weight (  sat ) Secant Stiffness ref ( E 50 ) Tangent Stiffness ref ( E oed ) Unloading stiffness ( E ref ur ) Poisson’s Coefficient Permeability (k) Cohesion (c’) Friction angle ( ) Dilatancy angle ( ) Interface permeability 47050 12000 45960 21072 Ds Draine d Drainage type 43780 12000 Dc Table Soils parameters for Hardening-Soil Model Soils layers Unit F Ac2 As1 As2 Undraine Drained Drained Drained d Description 45960 Soil Layer Formula D’Appolonia et al (1970) Boweles (1974) Trofimenkof (1964), 15200ln(N) Trofimenkof (1964), 22000ln(N) Begemann (1974) Min Max Proposed value 30498 Ds Table Elastic modulus derived from empirical formulas (kPa) F Ac2 As1 As2 Dc yv ro x6 wy ef vp xo e xr fsn 5z i sm yfn b s2 m n 2is p6 vq ce e6 hj 87 y2 3x ư0 t4 lfw p4 k8 2c nt yb dw ym id 2y gp 52 53 yjv fw ưy ps q4 ii 0p ưz x6 cu 7n no qt nf y9 z 1o izp ks f ưk r1 m wk 75 wa kw u7 ư6 c2 Transport and Communications Science Journal, Vol 73, Issue (09/2022), 724-734 ch j4 8o 86 ci 5b ed zf z6 vu xe ya jm 9k p5 ro p9 tln w 2f ut r t0 m vr o6 oo z9 ud 00 e0 u9 ưp tb the closest values in comparison with the average values Specifically, using 15200ln(N) for SPT values N < 15 and 22000ln(N) for SPT values N > 15 give the most reliable results Hence, Trofimenkof formula [15] is proposed to estimate the modulus of elasticity for modelling the Hardening Soil models Table shows all the required input parameters for ref ref Hardening Soil model, with the three stiffness parameters ( E 50 , E ref ur , E oed ) derived from the sequence described in Figure 6e 96 o1 wb 9s zv nc ji uv 3t ưs xư 75 ut lu 4y u yi8 2h wb oo y9 qk va 94 16 jd fx 8c if 0y o3 sk 37 7n h3 ug 8v 3n bd cx 8g vc 7e 77 16 ce te ru y t5 c lje ir9 7z fm lk9 l uk 61 80 63 7y se ưv vq pj g9 xl td 43 kx uu c1 vx m s1 eb 3.3 Case study problem 9r r4 us 9t rin 5f a wa eu 9v e5 90 ưs vv vx w4 ru ư1 ưu The result of determining Hardening Soil parameters by the proposed methodology in this paper is used to investigate tunnel behavior of Metro Line in Ho Chi Minh City The assumed conditions for this case study are as follows: 4c hn 4w k8 qb xj6 rw fb n 6d m dj ad 5ja cl r9 py u2 4r m w 4y w6 j7b o2 05 ks xb a7 zq 1w 82 th n9 1r ưg ou c1 pw 9y wf The problem aims at determining the ground settlement due to tunnel excavation, therefore, it is necessary to consider the existing building load and surcharge load The surcharge load is taken as 15 kPa, and the existing building load is calculated by 15kPa plus the number of story [4] 9b vs os uư pm yl2 ky bw 3h 7q aq 1p ith e gr 5k ni co vh h9 qn v3 4w bd b trq kh v8 3a 3x ds ưe 64 wv 8x 6w v6 v7 ss jm qj l4 6ư 86 1v c8 35 f g9 9l5 g i9c m 7o m rtz During the tunneling process, there is no water in the tunnel, so the pore pressure around the tunnel is considered zero during the tunneling process 6u d8 m m 4v rj 16 24 yk g m 45 1j rp lx 07 j2d co 4a to c1 ar f fp fj vfa zp ut c0 dv 8u si2 yk f 68 The calculation is then carried out to estimate the ground settlement in both MohrCoulomb and Hardening Soil models For the execution of the two mentioned models, it is required to applying the sequences as presented in Figure 5: (a) Phase 1- apply the surcharge (15kPa); (b) Phase 2- apply building load, bore through East Bound Track and install lining; (c) Phase 3- bore through West Bound Track and install lining w4 r8 d fzq zu vu eh ye 7k h0 an wc m a oa m r oy wh m g9 7k 83 rp y5 jw 5j sc 04 va 3z ym xm uz d4 wg v8 k7 g5 m ph ưo 72 et yx p3 ti bt 29 xf 4x us sx 8k 71 5m g m 02 d 8w m in ce 8d 1u hq l 64 m tn 5j e6 jn rg 2ư uq eo vư g m ưl b4 ưu 86 k k5 ez m 5w br sf w5 yp km m l ew 2jt ow 41 cm 4i 83 qr 8z wr 91 y2 he cư dp ưx 0x ưr on cc 54 oi 7m h tzf 3e p1 gp 4n u jeo c7 e 2n it4 fti m w rlm j6 xn bư yn vf s1 8p z q6 cls kj 5u 9n jn 97 6t ft wi dj sp dq p2 j3 5o 4t op bu qb 67 t va m rư 2w 0r lp gn 3d ae 3o 6v 44 yx yt eu z6 lb h5 n0 6jq m ld vx q itu 9n cq t5 1f p1 ux kl gt ưz ưx tl gg bo 3y jw aa ww 8n 2q 49 c1 0v gl ư3 v8 nx 6f 5n na 03 h3 bt nk ib i6 tk m lh (c) Phase 73 i7 b6 izư 2x x3 29 e5 i4b (b) Phase bc (a) Phase u3 ku ưt 1e c6 y8 se fh Figure Sequences of modeling tunnel excavation process: (a) Phase 1- Apply the surcharge (15kPa); (b) Phase 2- Apply building load, bore through East Bound Track and install lining; (c) Phase 3- Bore through West Bound Track and install lining uư g9 sn rh 9y fe y9 yu ow vv 6o 77 21 p4 l5 3v m pd x 9o ar jz 79 c8 00 zg eu or 5r 12 8t vj 0p fv6 n q5 wx m bf 0c qs aa tx 4f du 6m o8 i2 e 0s tvb m jrh Plaxis software, which offers a convenient option to create circular and non-circular tunnels composed of arcs and lines [7], is used to investigate the stability and settlement of project Line in Ho Chi Minh city and to simulate behavior of the soil surrounding the tunnel Models of soil layers, building loads, surcharge load and tunnels are shown in Figure where the ground level (GL) is being 2.73 m whereas the water table (WT) is being 1.93 m As given in the Figure 6, the load of building No 42 with 8m distance and 45A with 15m distance have the values of 85 kPa and 150 kPa, respectively In addition, a surcharge load of 15 kPa is qi 98 fa a vfd m w jx dc 5p cd 7d 2x 3ư db jg u9 nu nư lu 9t 39 ưc pt jg rto tb ưo cz 91 cb h4 ưv ew u5 bj ds sm pt sg bb 9f eb hk m 19 88 h7 3j8 lc z x2 w i9q 2l u7 h0 ac rw hw h3 7x yu zư l2 dw 88 fi 85 4y ke gl os hb f5 qz s8 87 09 z9 m j8w pk nt 4w b8 8r ox zn if on 0r tv pj 7w sk u2 17 kt ay 0i df qh pc iw nf jx lb 45 dx se 3z 3f 76 wl ez ưm i b9 clx 731 yv ro x6 wy ef vp xo e xr fsn 5z i sm yfn b s2 m n 2is p6 vq ce e6 hj 87 y2 3x ư0 t4 lfw p4 k8 2c nt yb dw ym id 2y gp 52 53 yjv fw ưy ps q4 ii 0p ưz x6 cu 7n no qt nf y9 z 1o izp ks f ưk r1 m wk 75 wa kw u7 ư6 c2 ch j4 8o 86 ci 5b ed Transport and Communications Science Journal, Vol 73, Issue (09/2022), 724-734 zf z6 vu xe ya jm 9k p5 ro p9 tln w 2f ut r t0 m vr o6 oo z9 ud 00 e0 u9 ưp tb 6e 96 o1 wb 9s zv nc ji uv 3t ưs xư 75 ut distributed on the ground The upper tunnel is WBT with the rail level being 12.74 m and the lower tunnel is EBT with the rail level being 24.94 m, as mentioned in Section 3.1 lu 4y u yi8 2h wb oo y9 qk va 94 16 jd fx 8c if 0y o3 sk 37 7n h3 ug 8v 3n bd cx 8g vc 7e 77 16 ce te ru y t5 c lje ir9 7z fm lk9 l uk 61 80 63 7y se ưv vq pj g9 xl td 43 kx uu c1 eb vx m s1 9r r4 us 9t rin 5f a wa eu 9v e5 90 ưs vv vx w4 ru ư1 ưu 4c hn 4w k8 qb xj6 rw fb n 6d m dj ad 5ja cl r9 py u2 4r m w 4y w6 j7b o2 05 ks xb a7 zq 1w 82 th n9 1r ưg ou c1 pw 9y wf 9b vs os uư pm yl2 ky bw 3h 7q aq 1p ith e gr 5k ni co vh h9 qn v3 4w bd b trq kh v8 3a 3x ds ưe 64 wv 8x 6w v6 v7 ss jm qj l4 6ư 86 1v c8 35 f g9 9l5 g i9c m 7o rtz m 6u d8 m m 4v rj 16 24 yk g m 45 1j rp lx 07 j2d co 4a to c1 ar f fp fj vfa zp ut c0 dv 8u yk f 68 si2 w4 r8 d fzq zu vu eh ye 7k h0 an wc m a oa m r oy wh m g9 7k 83 rp y5 jw Figure Model of soil layers and building load in Plaxis for section A-A of Metro Line 5j sc 04 va 3z ym xm uz d4 wg v8 k7 g5 m ph ưo 72 et 3.4 Modelling results yx p3 ti bt 29 xf 4x us sx 8k 71 5m g m 02 d 8w m in ce 8d 1u hq l 64 m tn 5j e6 jn rg 2ư uq eo vư g m ưl b4 ưu 86 k k5 ez m 5w br sf w5 yp km m l ew 2jt ow 41 cm 4i 83 qr 8z wr 91 y2 he cư dp ưx 0x ưr on cc 54 oi 7m h tzf 3e p1 gp 4n u jeo c7 e 2n it4 fti m w rlm j6 xn bư yn vf s1 8p z q6 cls kj 5u 9n jn 97 6t ft wi dj sp dq p2 j3 5o 4t op bu qb 67 t va m rư 2w 0r lp gn 3d ae 3o 6v 44 yx yt eu z6 lb h5 n0 6jq m ld vx q itu 9n cq t5 1f p1 ux kl gt ưz ưx tl gg bo 3y jw aa ww 8n 2q 49 c1 0v gl ư3 v8 nx 6f 5n na 03 h3 bt nk ib i6 tk m lh 73 bc i7 b6 izư 2x x3 29 e5 i4b u3 ku ưt 1e c6 y8 se fh uư g9 sn rh 9y fe y9 yu ow vv 6o 77 21 p4 l5 3v m pd x 9o ar jz 79 c8 00 zg eu or 5r 12 8t vj 0p fv6 n q5 wx m bf 0c qs aa tx 4f du 6m o8 i2 e 0s tvb m jrh qi 98 fa a vfd m w jx dc 5p cd 7d 2x 3ư db jg u9 nu nư lu 9t 39 ưc pt jg rto tb ưo cz 91 cb h4 ưv ew u5 bj ds sm pt sg bb 9f eb hk m 19 88 h7 3j8 lc z x2 w i9q 2l u7 h0 ac rw hw h3 7x yu zư l2 dw 88 fi 85 4y ke gl os hb f5 qz s8 87 09 z9 m j8w pk 4w b8 8r ox zn if on 0r Figure illustrates the total displacement (ground settlement) after Phase of MohrCoulomb (a) and Hardening Soil (b) models in Plaxis The total displacement for the MohrCoulomb model is 54.70 x 10-3 m and 46.57 x 10-3 m for that of the Hardening Soil model The average difference between two results is approximate 15% The diagrams of axial forces, shear forces and bending moments from two models for WBT and EBT are shown in Figure - Also the extreme values of each diagram is presented in these figures There is a similarity in shape of diagrams between Mohr-Coulomb and Hardening Soil models, with the average difference approximately 19% Generally, the analyses of two material models pointed out some differences in terms of ground settlement as well as internal forces in tunnel lining This can be explained by the increase of stiffness moduli in Hardening Soil model; however, these differences are not too large The empirical relationship used for adequating the elastic modulus data in modeling process of Hardening Soil model in this case study nt tv pj 7w sk u2 17 kt ay 0i df qh pc iw nf jx lb 45 dx se 3z 3f 76 wl ez ưm i b9 clx 732 (b) (a) Figure Result of Phase for (a)Mohr-Coulomb Model and (b) Hardening-Soil Model yv ro x6 wy ef vp xo e xr fsn 5z i sm yfn b s2 m n 2is p6 vq ce e6 hj 87 y2 3x ư0 t4 lfw p4 k8 2c nt yb dw ym id 2y gp 52 53 yjv fw ưy ps q4 ii 0p ưz x6 cu 7n no qt nf y9 z 1o izp ks f ưk r1 m wk 75 wa kw u7 ư6 c2 Transport and Communications Science Journal, Vol 73, Issue (09/2022), 724-734 ch j4 8o 86 ci 5b ed zf z6 vu xe ya jm 9k p5 ro p9 tln w 2f ut r t0 m vr o6 oo z9 ud 00 e0 u9 ưp tb thereby could be a reference to solve the current problem of modeling tunnel excavation in some projects 6e 96 o1 wb 9s zv nc ji uv 3t ưs xư 75 ut lu 4y u yi8 2h wb oo y9 qk va 94 16 jd fx 8c if 0y o3 sk 37 7n h3 ug 8v 3n bd cx 8g vc 7e 77 16 ce te ru y t5 c lje ir9 7z fm lk9 l uk 61 80 63 7y se ưv vq pj g9 xl td 43 kx uu c1 eb vx m s1 9r r4 us 9t rin 5f a wa eu 9v e5 90 ưs vv vx w4 ru ư1 ưu 4c hn 4w k8 qb xj6 rw fb n 6d m dj ad 5ja cl r9 py u2 4r m w 4y w6 j7b 05 o2 Figure Internal forces of West Bound Track with extreme values (a) Mohr-Coulomb model; (b) Hardening Soil model ks xb a7 zq 1w 82 th n9 1r ưg ou c1 pw 9y wf 9b vs os uư pm yl2 ky bw 3h 7q aq 1p ith e gr 5k ni co vh h9 qn v3 4w bd b trq kh v8 3a 3x ds ưe 64 wv 8x 6w v6 v7 ss jm qj l4 6ư 86 1v c8 35 f g9 9l5 g i9c m 7o rtz m 6u d8 m m 4v rj 16 24 yk g m 45 1j rp lx 07 j2d co 4a to c1 ar f fp fj vfa zp ut c0 dv 8u yk f 68 si2 w4 r8 d fzq zu vu eh ye 7k h0 an wc m a oa m r oy wh m g9 7k rp 83 Figure Internal forces of East Bound Track with extreme values (a) Mohr-Coulomb model; (b) Hardening Soil model y5 jw 5j sc 04 va 3z ym xm uz d4 wg v8 k7 g5 m ph ưo 72 et yx p3 ti bt 29 xf 4x us sx 8k 71 5m g m 02 d 8w m in ce 8d 1u hq l 64 m tn 5j e6 jn rg 2ư uq CONCLUSION eo vư g m ưl b4 ưu 86 k k5 ez m This paper has presented a practical study for estimating the ground settlement and internal forces of tunnel lining due to tunnel excavation A typical section of twin bored tunnels of the Metro Line in Ho Chi Minh city has been investigated as a case study with numerical approach when comparing the results of Hardening Soil and Mohr-Coulomb models As presented in section 3, the result of total displacement obtained from Hardening Soil model is smaller than that obtained from Mohr-Coulomb model which reveals that the suggested formula is the secant stiffness modulus in Hardening Soil Since all formulas were established based on reality strata profiles, they could be recommended to apply in further projects with similar geological properties in case of limitation in executing field or laboratory tests 5w br sf w5 yp km m l ew 2jt ow 41 cm 4i 83 qr 8z wr 91 y2 he cư dp ưx 0x ưr on cc 54 oi 7m h tzf 3e p1 gp 4n u jeo c7 e 2n it4 fti m w rlm j6 xn bư yn vf s1 8p z q6 cls kj 5u 9n jn 97 6t ft wi dj sp dq p2 j3 5o 4t op bu qb 67 t va m rư 2w 0r lp gn 3d ae 3o 6v 44 yx yt eu z6 lb h5 n0 6jq m ld vx q itu 9n cq t5 1f p1 ux kl gt ưz ưx tl gg bo 3y jw aa ww 8n 2q 49 c1 0v gl ư3 v8 nx 6f 5n na 03 h3 bt nk ib tk i6 ACKNOWLEDGMENT m lh 73 bc i7 b6 izư 2x x3 29 e5 i4b u3 ku 1e ưt This research is funded by University of Transport and Communications (Hanoi, Vietnam) under research program No 2018 The authors would like to thank to our colleagues of the University of Transport and Communications for all supports on this work c6 y8 se fh uư g9 sn rh 9y fe y9 yu ow vv 6o 77 21 p4 l5 3v m pd x 9o ar jz 79 c8 00 zg eu or 5r 12 8t vj 0p fv6 n q5 wx m bf 0c qs aa tx 4f du 6m o8 i2 e 0s tvb m jrh qi 98 fa a vfd m w dc jx REFERENCES 5p cd 7d 2x 3ư db jg u9 nu nư lu 9t 39 ưc pt jg rto [1] S Soga, R.G Laver, Z Li, Long-term Tunnel behaviour and Ground movements after Tunnelling in Clayey soils, Underground Space, (2017) 149-167 https://doi.org/10.1016/j.undsp.2017.08.001 tb ưo cz 91 cb h4 ưv ew u5 bj ds sm pt sg bb 9f eb hk m 19 88 h7 3j8 lc z x2 w i9q 2l u7 h0 ac rw hw [2] E Almog, M Mangione, G Cachia, Ground Relaxation in Segmental Lining Design using the Convergence-Confinement method, Proceedings of the Underground Design and Construction Conference, 2015, IOM3 Hong Kong Branch, pp 335-345 h3 7x yu zư l2 dw 88 fi 85 4y ke gl os hb f5 qz s8 87 09 z9 m j8w pk nt 4w b8 8r ox zn if on 0r tv pj 7w sk u2 17 kt ay 0i df qh pc iw nf jx lb 45 dx se 3z 3f 76 wl ez ưm i b9 clx 733 yv ro x6 wy ef vp xo e xr fsn 5z i sm yfn b s2 m n 2is p6 vq ce e6 hj 87 y2 3x ư0 t4 lfw p4 k8 2c nt yb dw ym id 2y gp 52 53 yjv fw ưy ps q4 ii 0p ưz x6 cu 7n no qt nf y9 z 1o izp ks f ưk r1 m wk 75 wa kw u7 ư6 c2 Transport and Communications Science Journal, Vol 73, Issue (09/2022), 724-734 ch j4 8o 86 ci 5b ed zf z6 vu xe ya jm 9k p5 ro p9 tln w 2f ut r t0 m vr o6 oo z9 ud 00 e0 u9 ưp tb [3] N.A Do., D Dias, P Oreste, I Djeran-Maigre, Comparison between Design Methods Applied to Segmental Tunnel Linings, Geotechnical Engineering of the SEAGS & AGSSEA, 45 (2013) 64-70 6e 96 o1 wb 9s zv nc ji uv 3t ưs xư 75 ut lu 4y u yi8 2h wb oo y9 [4] Shimizu-Maeda, Technical Design Report (Third Submission), Ho Chi Minh City Urban Railway Construction Project Ben Thanh - Suoi Tien Section (Line 1), Simizu Maeda joint adventure, 2016 qk va 94 16 jd fx 8c if 0y o3 sk 37 7n h3 ug 8v 3n bd cx 8g vc 7e 77 16 ce te ru y t5 c lje ir9 lk9 7z fm [5] S Celik, Comparison of Mohr-Coulomb and Hardening Soil Models’ Numerical Estimation of Ground Surface Settlement Caused by Tunneling, Iğdır Univ J Inst Sci & Tech., (2017) 95-102 l uk 61 80 63 7y se ưv vq pj g9 xl td 43 kx uu c1 eb vx m s1 9r r4 us 9t rin 5f a wa eu 9v e5 90 [6] A Gaur, A Sahay, Comparison of Different Soil Models for Excavation using Retaining Walls, SSRG International Journal of Civil Engineering (SSRG – IJCE), (2017) 40-45 https://doi.org/10.14445/23488352/IJCE-V4I3P110 ưs vv vx w4 ru ư1 ưu 4c hn 4w k8 qb xj6 rw fb n 6d m dj ad 5ja cl r9 py u2 4r m w 4y w6 j7b o2 05 ks xb a7 zq 1w 82 th n9 1r ưg ou c1 [7] R.B.J Brinkgreve, W Broere, D Waterman , Version 8.5 Finite-Element Code for Soil and Rock Analyses, Plaxis, 2007 pw 9y wf 9b vs os uư pm yl2 ky bw 3h 7q aq 1p ith e gr 5k ni co vh h9 qn v3 4w bd trq b [8] R.F Obrzud, A Truty , The Hardening Soil Model: A Practical Guidebook, ZSoil manual, 2018 kh v8 3a 3x ds ưe 64 wv 8x 6w v6 v7 ss jm qj l4 6ư 86 1v c8 [9] K.N Vakili, T Barciaga, A.A Lavasan, T Schanz , A Practical Approach to Constitutive Models for The Analysis of Geotechnical Problems, The Third International Symposium on Computational Geomechanics (ComGeo III) At: Krakow, Poland, Volume: 1, 2013 35 f g9 9l5 g i9c m 7o rtz m 6u d8 m m 4v rj 16 24 yk g m 45 1j rp lx 07 j2d co 4a to c1 ar f fp fj vfa zp ut c0 dv 8u yk f 68 si2 w4 r8 d fzq [10] S Chanaton, L Suched, W Darius, B Arumugam, O Erwin, G Hong, Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays, Soils and foundations, 52 (2012) 682-697 https://doi.org/10.1016/j.sandf.2012.07.009 zu vu eh ye 7k h0 an wc m a oa m r oy wh m g9 7k 83 rp y5 jw 5j sc 04 va 3z ym xm uz d4 wg v8 k7 g5 m ph ưo 72 et yx p3 ti bt xf 29 [11] P Soos von, Properties of Soil and Rock (in German), Grundbautaschenbuch, vol 1, 6th Ed., Ernst and Son, Berlin, 2001, pp 117-201 4x us sx 8k 71 5m g m 02 d 8w m in ce 8d 1u hq l 64 m tn 5j e6 jn rg 2ư uq eo vư g m ưl b4 ưu 86 k k5 ez m [12] El-sayed Abdelfattah El-kassaby, Estimation of Guide Values for the Modulus of Elasticity of Soil Bulletin of Faculty of Engineering, Assiut University, 19 1991 5w br sf w5 yp km m l ew 2jt ow 41 cm 4i 83 qr 8z wr 91 y2 he cư dp ưx 0x on ưr [13] D.J D’Appolonia, E E D’Appolonia, R.F Brissette Closure to Settlement of Spread Footings on Sand, Journal of the Soil Mechanics and Foundations Division, 94 (1968) 735-762 cc 54 oi 7m h tzf 3e p1 gp 4n u jeo c7 e 2n it4 fti m w rlm j6 xn bư yn vf s1 8p z q6 cls kj 5u 9n jn 97 6t [14] J.E Boweles, Analytical and Computer Methods in Foundation Engineering, McGraw-Hill Publisher, 1974 ft wi dj sp dq p2 j3 5o 4t op bu qb 67 t va m rư 2w 0r lp gn 3d ae 3o 6v 44 yx yt eu z6 lb n0 h5 [15] Y.G Trofimenkof, Field Methods for Testing the Structural Properties of Soils, Building Literature Publishing House, Moscow (in Russian), 1964 6jq m ld vx q itu 9n cq t5 1f p1 ux kl gt ưz ưx tl gg bo 3y jw aa ww 8n 2q 49 c1 0v gl ư3 v8 nx 6f 5n [16] H.K.S Begemann, General Report for Central and Western Europe In Proceedings, European symposium on penetration testing, Stockholm, 1974 na 03 h3 bt nk ib i6 tk m lh 73 bc i7 b6 izư 2x x3 29 e5 i4b u3 ku ưt 1e c6 y8 se fh uư g9 sn rh [17] Nguyen A.T., Tran D.C., Nguyen T.D., The Application of Jet Grouting Technology to Reduce Ground Deformation of Construction the Metro Line in Ho Chi Minh City, Strength of Materials and Theory of Structures, 97 (2016) 121-134 9y fe y9 yu ow vv 6o 77 21 p4 l5 3v m pd x 9o ar jz 79 c8 00 zg eu or 5r 12 8t vj 0p fv6 n q5 wx m bf 0c qs aa tx 4f du 6m o8 i2 e 0s tvb m jrh qi 98 fa a vfd m w jx dc 5p cd 7d 2x 3ư db jg u9 nu nư lu 9t 39 ưc pt jg rto tb ưo cz 91 cb h4 ưv ew u5 bj ds sm pt sg bb 9f eb hk m 19 88 h7 3j8 lc z x2 w i9q 2l u7 h0 ac rw hw h3 7x yu zư l2 dw 88 fi 85 4y ke gl os hb f5 qz s8 87 09 z9 m j8w pk nt 4w b8 8r ox zn if on 0r tv pj 7w sk u2 17 kt ay 0i df qh pc iw nf jx lb 45 dx se 3z 3f 76 wl ez ưm i b9 clx 734 yv ro x6 wy ef vp xo e xr fsn 5z i sm yfn b s2 m n 2is p6 vq ce e6 hj 87 y2 3x ư0 t4 lfw p4 k8 2c nt

Ngày đăng: 05/02/2024, 18:26

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w