ĐỀTHITHỬĐẠI HỌC, CAO ĐẲNG Mônthi : TOÁN ( ĐỀ 82-k ) Câu 1. (2,0 điểm). Cho hàm số y = 1 2 −x x . 1. Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số. 2. Tìm các giá trị của m để đường thẳng y = mx – m + 2 cắt đồ thị ( C ) tại hai điểm phân biệt A,B và đoạn AB có độ dài nhỏ nhất. Câu 2. (2,0 điểm). 1. Giải phương trình: sin 3 x(1 + cotx) + cos 3 x(1 + tanx) = 2 xx cos.sin . 2. Giải bất phương trình: x x−2 ≤ x 2 – x – 2 – x−2 . Câu 3. (2,0 điểm). 1. Tính diện tích hình phẳng giới hạn bởi parabol (P): y = 4x – x 2 và các tiếp tuyến được kẻ từ điểm M ( 2 1 ; 2) đến (P). 2. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng a và 2 2 a SASCSCSBSBSA === . Tính thể tích khối chóp S.ABC theo a. Câu 4. (2,0 điểm) 1. Viết về dạng lượng giác của số phức: z = 1 – cos2 α - isin2 α , trong đó πα π 2 2 3 << . 2. Giải hệ phương trình: +=+−+ +=+−+ − − 1322 1322 12 12 x y yyy xxx ( với x,y ∈ R). Câu 5. (2,0 điểm) 1. Trong mặt phẳng Oxy , cho hai đường thẳng d 1 : 2x + y + 5 = 0, d 2 : 3x + 2y – 1 = 0 và điểm G(1;3). Tìm tọa độ các điểm B thuộc d 1 và C thuộc d 2 sao cho tam giác ABC nhận điểm G làm trọng tâm. Biết A là giao điểm của hai đường thẳng d 1 và d 2 . 2. Trong không gian Oxyz, hãy lập phương trình mặt phẳng ( α ) đi qua điểm M(3;2;1) và cắt ba tia Ox, Oy, Oz lần lượt tại ba điểm A, B, C sao cho thể tích khối tứ diện OABC có giá trị nhỏ nhất. ………………………………………… Hết……………………………… ĐỀTHITHỬĐẠI HỌC, CAO ĐẲNG 2012 Mônthi : TOÁN ( ĐỀ 83-k ) PHẦN CHUNG CHO MỌI THÍ SINH Câu I) Cho hàm số 3 2 2 3( 1) 2y x mx m x= + + − + (Cm) 1). Khảo sát và vẽ đồ thị (Cm) khi m=0 2). Cho điểm M(3;1) và đường thẳng d:x+y-2=0. Tìm các giá trị của m để đường thẳng (d) cắt đồ thị tại 3 điểm A(0;2); B,C sao cho tam giác MBC có diện tích bằng 2 6 Câu II) 1) Giải phương trình sau: 4 4 2 1 cot 2 .cotx 2(sin os ) 3 os x x c x c x + + + = 2) Tính tích phân sau: 2 0 os 4 4 3sin 2 c x I dx x π π − ÷ = − ∫ Câu III) 1) Giải hệ phương trình sau: 2 2 2 2 2 2 1 2 1 x y x y xy x x y xy y xy + + = + + + = + + 2) Cho khối lăng trụ ABCA’B’C’ có đáy ABC làn tam giác đều. Biết AA’=AB=a. Tính thể tích khối lăng trụ biết các mặt bên (A’AB) và (A’AC) cùng hợp với đáy ABC một góc bằng 60 0 Câu IV) Tìm m để bất phương trình ( ) 2 2 2 2 1 2ln 1 x x x m x x+ + − ≥ + + nghiệm đúng với mọi x thuộc ( ) 1;1− PHẦN RIÊNG (THÍ SINH CHỈ ĐƯỢC CHỌN PHẦN A HOẶC PHẦN B) PHẦN A) Câu VI A) 1) Trong mặt phẳng Oxy cho đường tròn (C) có phương trình ( ) ( ) 2 2 6 6 50.x y+ + − = Viết phương trình đường thẳng ∆ cắt 2 trục toạ độ tại A,B tiếp xúc với đường tròn (C) tại M sao cho M là trung điểm của AB. 2) Trong không gian Oxyz cho hình bình hành ABCD có phương trình cạnh 2 3 : 2 1 2 x y z CD − − = = và 2 đường thẳng 1 1 1 1 1 1: ; 2: 1 1 1 1 1 2 x y z x y z d d − − + − + = = = = − . Biết đỉnh A thuộc d1, B thuộc d2. Xác định toạ độ các đỉnh và tính diện tích hình bình hành. Câu VII A) Tìm số phức z biết : 2 . ( 2 ) 10 3z z z z z i+ − − = + PHẦN B) Câu VI B) 1) Trong mặt phẳng Oxy cho hai đường tròn (C1): ( ) ( ) 2 2 1 1 1x y− + − = và (C2): ( ) 2 2 2 9x y+ + = và điểm M(1;0). Viết phương trình đường thẳng ∆ qua M cắt (C1); (C2) tại A và B sao cho MA=2MB 2) Trong không gian Oxyz cho đường thẳng 1 : ; (0;3; 2) 1 1 4 x y z M − ∆ = = − . Viết phương trình mặt phẳng (P) qua M song song với ∆ , đồng thời khoảng cách giữa đường thẳng ∆ và mặt phẳng (P) bằng 3. Câu VII B) Tìm dạng lượng giác số phức z biết |z| =2010 và 1 z i+ có một gumen là 3 4 π − . ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 82-k ) Câu 1. (2,0 điểm). Cho hàm số y = 1 2 −x x . 1. Khảo sát sự biến thi n và vẽ đồ thị ( C ) của hàm số. 2. Tìm các giá. nhỏ nhất. ………………………………………… Hết……………………………… ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN ( ĐỀ 83-k ) PHẦN CHUNG CHO MỌI THÍ SINH Câu I) Cho hàm số 3 2 2 3( 1) 2y x mx m x= + + − + (Cm) 1) S.ABC có đáy ABC là tam giác đều cạnh bằng a và 2 2 a SASCSCSBSBSA === . Tính thể tích khối chóp S.ABC theo a. Câu 4. (2,0 điểm) 1. Viết về dạng lượng giác của số phức: z = 1 – cos2 α - isin2 α