(Luận văn thạc sĩ hcmute) nghiên cứu các mô hình memsistor và ứng dụng thiết kế các cổng logic

95 1 0
(Luận văn thạc sĩ hcmute) nghiên cứu các mô hình memsistor và ứng dụng thiết kế các cổng logic

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH LUẬN VĂN THẠC SĨ HÀ VĂN QN NGHIÊN CỨU CÁC MƠ HÌNH MEMRISTOR VÀ ỨNG DỤNG THIẾT KẾ CÁC CỔNG LOGIC NGÀNH : KỸ THUẬT ÐIỆN TỬ - 60520203 S K C0 2 Tp Hồ Chí Minh, tháng 3/2017 Luan van BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH LUẬN VĂN THẠC SĨ HÀ VĂN QUÂN NGHIÊN CỨU CÁC MƠ HÌNH MEMRISTOR VÀ ỨNG DỤNG THIẾT KẾ CÁC CỔNG LOGIC NGÀNH: KỸ THUẬT ĐIỆN TỬ - 60520203 Tp Hồ Chí Minh, tháng 3/2017 Luan van BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH LUẬN VĂN THẠC SĨ HÀ VĂN QN NGHIÊN CỨU CÁC MƠ HÌNH MEMRISTOR VÀ ỨNG DỤNG THIẾT KẾ CÁC CỔNG LOGIC NGÀNH: KỸ THUẬT ĐIỆN TỬ - 60520203 Hướng dẫn khoa học: TS VÕ MINH HUÂN Tp Hồ Chí Minh, tháng 3/2017 Luan van Luan van Luan van Luan van Luan van Luan van Luan van Luan van Chương 4: Ứng dụng memristor thiết kế cổng logic (a) Cấu hình MRL NOR (b) Kết mơ cadence Hình 4.8 : Cấu hình cổng logic NOR (a) kết mơ cadence (b) 60 Luan van Chương 4: Ứng dụng memristor thiết kế cổng logic (a) Cấu hình MRL NAND (b) Kết mơ cadence Hình 4.9: Cấu hình cổng logic NAND (a) kết mô cadence (b) 61 Luan van Chương 4: Ứng dụng memristor thiết kế cổng logic 4.4 Cổng EXOR/ EXNOR Bằng cách kết hợp cổng logic AND OR với invector ta tạo cổng EXOR theo nhiều cách khác Tương tự vậy, từ cổng logic thiết kế từ memristor, ta tạo cổng MRL EXOR Hình 4.6 bên mạch thiết kế cổng EXOR tạo từ MRL AND, MRL OR invector Hình 4.10: Cấu trúc logic MRL XOR Kết giá trị ngõ mô với thông số tương tự thu bảng giá trị thật nó, thể hình 4.11 với tín hiệu ngõ vào A1, A2 ngõ Vout2 Dễ dàng nhận thấy điện áp ngõ tức mức hai ngõ vào có giá trị điện áp khác Tuy trình chuyển mạch diễn chưa hoàn toàn kết thu xác 62 Luan van Chương 4: Ứng dụng memristor thiết kế cổng logic Hình 4.11: Kết mô MRL EXOR cadence Như biết, giá trị ngõ cổng EXNOR ngược lại giá trị logic EXOR nên dễ dàng thiết kế cổng EXNOR cách thêm invector sau EXOR Cấu trúc MRL EXNOR thể hình 4.12 giá trị ngõ thu 4.13 Giá trị điện áp ngõ mức hai ngõ vào có giá trị giống A XNOR B Hình 4.12: Cấu trúc logic MRL XNOR 63 Luan van Chương 4: Ứng dụng memristor thiết kế cổng logic Hình 4.13: Kết mơ MRL EXNOR cadence 4.5 Mạch cộng bit 4.5.1 Bộ Cộng Half-adder Mạch cộng half-adder mạch tổ hợp thực chức cộng giá trị hai ngõ vào khơng tính đến cờ nhớ Ngõ mạch cộng giá trị tổng cờ nhớ sinh từ kết cộng Mạch cộng half-adder bit có bảng thật sau: 64 Luan van Chương 4: Ứng dụng memristor thiết kế cổng logic Bảng 4.3: Bảng giá trị thật mạch cộng half-adder bit A B S (A XOR B) Cout (A AND B) 0 0 1 1 1 Từ việc memristor ứng dụng cổng logic, ta thiết kế mạch cộng half-adder bit sử dụng memristor thông qua cổng EXOR cổng AND hình 4.14 S Cout A B Hình 4.14: Mạch cộng half-adder bit Giá trị logic ngõ thu tương tự kết cổng logic AND (Cout) and XOR (S) thể hình 4.15 65 Luan van Chương 4: Ứng dụng memristor thiết kế cổng logic Hình 4.15: kết mơ ngõ Cout S 4.5.2 Bộ cộng Full-adder Mạch cộng full-adder mạch tổ hợp thực chức cộng giá trị hai ngõ vào có tính đến cờ nhớ Mạch cộng full-adder bit có bảng thật sau: 66 Luan van Chương 4: Ứng dụng memristor thiết kế cổng logic Bảng 4.4: Bảng thật mạch cộng Full adder bit Cin A B S Cout 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 Mạch cộng full-addr bit thiết kế dụa memristor thể hình 4.16 gồm cổng logic kết hợp với S Cout A B Cin Hình 4.16: Mạch cộng full-adder bit Giá trị logic ngõ thu tương tự kết cổng logic AND (Cout) and XOR (S) thể hình 4.17 với thứ tự dạng sóng A, B, C, S, Cout 67 Luan van Chương 4: Ứng dụng memristor thiết kế cổng logic Hình 4.17: kết mơ mạch cộng full-adder 68 Luan van Chương 4: Ứng dụng memristor thiết kế cổng logic Từ kết thu ta áp dụng để thiết kế cộng n-bit hay mạch logic khác mạch nhân, mạch chia, 69 Luan van Chương 5: Kết luận hướng phát triển CHƯƠNG KẾT LUẬN, ĐÁNH GIÁ VÀ HƯỚNG PHÁT TRIỂN 5.1 Đánh giá Đề tài nghiên cứu tập trung cấu trúc, đặc điểm công nghệ vi mạch – điện trở nhớ (Memristor); Phân tích đặc tuyến cấu trúc mơ hình memristor xây dựng theo cách thức khác nhằm đưa mơ hình tới ưu Qua đó, ứng dụng memristor để thiết kế cổng logic số mạch cộng bit đạt kết mong muốn Bên cạnh cịn nhiều hạn chế chưa thực như: - Đặc tuyến mô hình Memristor chưa ổn định theo tham số mơ đưa - Quá trình chuyển mạch thiết kế cổng logic sai số định - Khơng thể thi cơng thực tế chi phí cao Với việc sử dụng memristor, kích thước mạch nhỏ hơn, số lượng phần tử mạch kéo theo tốc độ xử lý nhanh lượng tiêu hao thấp phần tử memristor có khả tích hợp cao, trì trạng thái ngưng cấp nguồn Cấu trúc “Memristor” giống với tế bào thần kinh, tạo điều kiện nghiên cứu, xây dựng hệ thần kinh nhân tạo Công nghệ “Memristor” mở khả xây dựng mạch tích hợp mật độ cao, tốc độ xử lý nhanh tổn hao lượng thấp Tuy nhiên, lĩnh vực mới, bắt đầu nghiên cứu Nhưng chứa nhiều tiềm để phát triển công nghệ vi mạch nước nhà, thách thức lớn cơng nghệ thời gian thử nghiệm 70 Luan van Chương 5: Kết luận hướng phát triển 5.2 Hướng phát triển Sau hoàn thành luận văn này, hướng phát triển tập trung nghiên cứu ứng dụng mới: - Nghiên cứu thêm đặc tính, ứng dụng memristor như: Tốc độ chuyển mạch memristor, khả lưu trữ liệu ngưng cấp nguồn, khả tích hợp, tiết kiệm lượng - Ứng dụng memristor cho ứng dụng khác, phức tạp cộng n bit, mạch trừ, mạch chia,… Với mục đích xây dựng nhớ, mạch tổ hợp có độ tích hợp cao, tốc độ xử lý nhanh tiết kiệm lượng 71 Luan van TÀI LIỆU THAM KHẢO [1] L Chua, “Memristor-The missing circuit element,” IEEE Transactions on Circuit Theory, vol 18, no 5, pp.507– 519, 1971 [2] S Kvatinsky, E G Friedman, A Kolodny, and U C Weiser, “TEAM: ThrEshold Adaptive Memristor Model,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol 60, p 211-220, 2012 [3] Shahar Kvatinsky, Member, IEEE, Misbah Ramadan, Eby G Friedman, “VTEAM – A General Model for Voltage Controlled Memristors”, IEEE transaction on circuit and system – II: Express briefs, vol -, p -, 2014 [4] Shahar Kvatinsky, Student Member, IEEE, Nimrod Wald, Guy Satat, Eby G Friedman, “MRL - Memristor Ratioed Logic for Hybrid CMOS-Memristor Circuits”, IEEE transaction on nanotechnology, vol -, p -, 2013 [5] S Kvatinsky, K Talisveyberg, D Fliter, E G Friedman, A Kolodny, and U C Weiser, “Models of memristor for spice simulations,” 2012 IEEE 27th [6] D B Strukov, G.S.Snider, D R Stewart, and R S Williams, “The missing memristor found,” Nature, vol.453, no 7191, pp 80–83, 2008 [7] T A Wey and S Benderli, “Amplitude modulator circuit featuring TiO2 memristor with linear dopant drift.,” Electronics Letters, vol 45, no 22, pp 1103–1104, 2009 [8] Y N Joglekar and S J Wolf, “The elusive memristor: properties of basic electrical circuits,” European Journal of Physics, vol 30, pp 661–683, 2009 [9] Z Biolek, D Biolek, and V Biolkova, “Spice model of memristor with nonlinear dopant drift,” Radioengineering, vol 18, no 2, pp 210–214, 2009 72 Luan van [10] T Prodromakis, B P Peh, C Papavassiliou, and C Toumazou, “A Versatile Memristor Model With Non- linear Dopant Kinetics,” IEEE Transactions on Electron Devices, vol 58, no 9, pp 3099–3105, 2011 [11] E Lehtonen and M and Laiho, “CNN Using Memristors for Neighborhood Connections,” 12th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), pp 1–4, 2010 [12] J J Yang et al., “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nature Nanotechnology, vol 3, no 7, pp 429–433, 2008 [13] M D Pickett, D B Strukov, J L Borghetti, J J Yang, G S.Snider, D R Stewart, and R S Williams, "Switching Dynamics in Titanium Dioxide Memristive Devices," Journal of Applied Physics, Vol 106, No 7, pp 1-6, October 2009 [14] J G Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” Journal of Applied Physics, vol 34, no 6, pp 1793–1803, 2004 [15] S Benderli and T A Wey, “On SPICE macromodelling of TiO2 memristors,” Electronics Letters, vol 45, no.7, pp 377–379, 2009 [16] H Abdalla and M D Pickett, “SPICE modeling of memristors,” IEEE International Symposium on Circuits and Systems (ISCAS), pp 1832–1835, 2011 [17] C Yakopcic, T M Taha, G Subramanyam, R E Pino, and S Rogers, “A Memristor Device Model,” IEEE Electron Device Letters, vol 32, no 10, pp 1436–1438, 2011 [18] S Kvatinsky, K Talisveyberg, D Fliter, E G Friedman, A Kolodny, and U C Weiser, “Verilog-A for Memristors Models,” CCIT Technical Report, no 801, December 2011 73 Luan van S K L 0 Luan van

Ngày đăng: 27/12/2023, 04:04