Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 21 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
21
Dung lượng
640,74 KB
Nội dung
___________________________________________ Chương 3 Các loại mã trong truyềndữ liệu III - 1 CHƯƠNG 3 CÁC LOẠI MÃ TRONG TRUYỀNDỮ LIỆU MÃ NHỊ PHÂN Mã Baudot Mã ASCII Mã EBCDIC CÁC MÃ PHÁT HIỆN LỖI Kiểm tra chẵn lẻ Kiểm tra khối Kiểm tra dư thừa theo chu kỳ Mã Hamming MÃ NÉN DỮ LIỆU Mã Huffman Mã Run-length Mã vi phân MẬT MÃ Mã Caesar Mã đa mẫu tự Mã chuyển vị Mã DES __________________________________________________________________________________________ ____ Tin tức bao gồm các văn bản, số liệu, hình ảnh . . . . cần được mã hóa bằng tập hợp các số nhị phân trước khi được chuyển đổi thành các tín hiệu số để truyền đi Một yếu tố quan trọng trong hệ thống thông tin là độ chính xác, thiếu yếu tố này hệ thống xem như không có giá trị sử dụng, nên kèm theo bản tin thường phải thêm vào các từ mã có khả năng phát hiện lỗi và th ậm chí sửa được lỗi. Ngoài ra, nếu số lượng bit dùng để mã hóa cùng một đối tượng càng ít thì với cùng vận tốc truyền, lượng thông tin truyền của hệ thống càng lớn mà lại hạn chế được khả năng xảy ra lỗi. Do đó việc giảm số lượng bit dùng mã hóa cũng là một vấn đề cần được quan tâm. Chương này bàn đến một số phương pháp mã hóa dữ liệu phổ biế n để tạo các loại mã có khả năng phát hiện lỗi, phát hiện và sửa lỗi, các loại mã nén. 3.1 MÃ NHỊ PHÂN CỦA CÁC CHỮ SỐ Để biểu diễn các chữ và số người ta dùng các mã nhị phân. Một số nhị phân n bit biểu thị được 2 n ký tự (chữ, số, các dấu hiệu ) Các bộ mã phổ biến trong truyềndữ liệu là : mã Baudot, mã ASCII và mã EBCDIC 3.1.1 Mã Baudot Là bộ mã nhị phân dùng 5 bit để biểu diển chữ số và một số dấu hiệu. Bảng 3.1 Bộ mã Baudot Mã Chữ Dấu/Số Mã Chữ Dấu/Số _____________________________________________________________________________________________________ Nguyễn Trung Lập Truyềndữ liệu ___________________________________________ Chương 3 Các loại mã trong truyềndữ liệu III - 2 110001001101 110100101000 010110010110 010101100110 101111001001 0011100110 00011 01101 A B C D E F G H I J K L M N O P - ? : $ 3 ! & # 8 ' ( ) . , 9 0 11101 01010 10100 00001 11100 01111 11001 10111 10101 10001 11111 11011 00100 00010 01000 00000 Q R S T U V W X Y Z LTRS FIGS SPC CR LF NULL 1 4 BELL 5 7 ; 2 / 6 " LTRS FIGS SPC CR LF NULL Với n = 5 chỉ có 2 5 = 32 mã khác nhau, không đủ để biểu diển các ký tự chữ và số nên một số mã phải biểu thị cả hai và chúng được phân biệt bằng cách kèm theo ký tự FIGS hoặc LTRS ở trước. Thí dụ: mã của đoạn văn NO. 27 có dạng như sau : LTRS N O FIGS . SPC 2 7 11111 00110 00011 11011 00111 00100 11001 11100 Khi dùng mã Baudot để truyền bất đồng bộ, số bit stop luôn luôn là 1,5 3.1.2 Mã ASCII Là bộ mã thông dụng nhất trong truyềndữ liệu. Mã ASCII dùng số nhị phân 7 bit nên có 2 7 = 128 mã, tương đối đủ để diễn tả các chữ, số và một số dấu hiệu thông dụng. Từ điều khiển dùng trong các giao thức truyền thông thường lấy trong bảng mã ASCII. Khi truyền bất đồng bộ dùng mã ASCII số bit stop là 1 hoặc 2. Bảng 3.2 trình bày mã ASCII cùng các từ điều khiển. * Từ điều khiển trong văn bản: BS (Back space): chỉ cơ chế in hay con trỏ được dời lui một vị trí. Nó có thể được dùng để in 2 ký tự ở một vị trí (thường dùng để gạch dưới) hay để in đậm một ký tự (in 1 ký tự 2 lần ở cùng vị trí). Trên màn hình (CRT) chữ sau sẽ thay cho chữ trước. HT (Horizontal Tab): chỉ cơ chế in hay con trỏ được dời tới vị trí tab kế c ận hay vị trí dừng. LF (Line Feed): chỉ cơ chế in hay con trỏ được dời xuống đầu dòng kế. VT (Vertical Tab): chỉ cơ chế in hay con trỏ được dời đến dòng kế của chuỗi dòng đã đánh dấu. FF (Form Feed): chỉ cơ chế in hay con trỏ được dời đến điểm bắt đầu của trang (màn ảnh) sau CR (Cariage Return): chỉ cơ chế in hay con trỏ được dời đến điểm bắt đầu trên cùng một dòng Bảng 3.2 Mã ASCII Bit 765→ 000 001 010 011 100 101 110 111 Bit 4321↓ 0 1 2 3 4 5 6 7 _____________________________________________________________________________________________________ Nguyễn Trung Lập Truyềndữ liệu ___________________________________________ Chương 3 Các loại mã trong truyềndữ liệu III - 3 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0 1 2 3 4 5 6 7 8 9 A B C D E F NULL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI DLED C1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US SP ! " # $ % & ` ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^(↑) _(←) ' a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ DEL Thí dụ: ký tự D là 1000100 = 44H Ý nghĩa các từ trong bảng mã ASCII * Từ điều khiển trong truyền thông SOH (Start of Heading): bắt đầu của phần đầu bản tin. Nó có thể chứa địa chỉ, chiều dài bản tin hay dữ liệu dùng cho kiểm tra lỗi. STX (Start of Text): bắt đầu văn bản đồng thời kết thúc phần đầu. Thường đi đôi với ETX. ETX (End of Text): kết thúc văn bản EOT (End of Transmission): chấm dứt truyền ENQ (Enquiry): yêu cầu mộ t đài xa tự xác định (identify itself). ACK (Acknowledge) : từ phát bởi máy thu để báo cho máy phát đã nhận bản tin đúng. NAK (Negative Acknowledgment): từ phát bởi máy thu để báo nhận bản tin sai. SYN (Synchronous/Idle): dùng bởi một hệ thống truyền đồng bộ để thực hiện đồng bộ. Khi không có dữ liệu để phát, máy phát của hệ thống đồng bộ phát liên tục các từ SYN ETB (End of Transmission Block): chỉ sự chấm dứt một khối của b ản tin. * Information separator FS (File Separator), GS (Group Separator), RS (Record Separator), US (United Separator): Dùng cho sự phân cách. Chữ đầu chỉ thành được phân cách (F: File, G: Group, R: Record (bảng ghi), U: Unit (đơn vị)) * Miscellaneous (Linh tinh) NUL (Null): ký tự rổng, dùng lấp đầy khoảng trống khi không có dữ liệu BEL (Bell): dùng khi cần báo sự lưu ý. SO (Shift Out): chỉ các tổ hợp mã theo sau được thông dịch bởi ký tự ngoài tập hợp ký tự chuẩn cho tới khi gặp từ Shift In. SI (Shift In): chỉ tập hợp mã theo sau được thông dịch bởi ký tự chuẩn. DEL (Delete): dùng bỏ từ SP (Space): khoảng cách từ DLE (Data Link Escape): dùng để chỉ sự thay đổi nghĩa của các từ theo sau. Nó có thể cung cấp một sự điều khiển phụ, hay cho phép gửi ký tự dữ liệu có một tổ hợp bit bất kỳ. DC1, DC2, DC3, DC4 (Device Control): từ dùng cho sự điều khiển thiết bị. CAN (Cancel): chỉ dữ liệu đặt trước nó không có giá trị, do dò được lỗi. EM (End of Medium): chỉ sự kết thúc về mặt vật lý của một card, băng hay môi trường khác. SUB (Substitute): thay thế một từ bị lỗi hoặc không có giá trị ESC (Escape) : từ tăng cường để cung cấp một mã mở rộng. _____________________________________________________________________________________________________ Nguyễn Trung Lập Truyềndữ liệu ___________________________________________ Chương 3 Các loại mã trong truyềndữ liệu III - 4 3.1.3 Mã EBCDIC (Extended BCD Information Code) Là bộ mã 8 bit được dùng rộng rãi trong hệ thống thông tin dùng máy tính IBM. Bảng 3.3 trình bày mã EBCDIC và các ký tự điều khiển. Vì mã ký tự chiếm 8 bit nên muốn dùng parity phải dùng bit thứ 9 (các thanh ghi trong các USART thường có 8 bit) do đó mã EBCDIC thường được dùng trong những chức năng đặc biệt như trong các ứng dụng đồ họa. Bảng 3.3 Mã EBCDIC High Lơw 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 NULL DLE DS SP & 0 1 SOH DC1 SOS a J A J 1 2 STX DC2 FS SYN b k s B K S 2 3 ETX DC3 c l t C L T 3 4 PF RES BYP PN d m u D M U 4 5 HT NL LF RS e n v E N V 5 6 LC BS ETB UC f o w F O W 6 7 DEL IL ESP EOT g p x G P X 7 8 CAN h q y H Q Y 8 9 RLF EM i r z I R Z 9 A SMM CC SM ! ‘ : B VT $ # C FF IFS DC4 * % @ D CR IGS ENQ NAK ( ) , E SO IRS ACK + = F SI IUS BEL SUB ? “ Các mã điều khiển không có trong ASCII là : PF Punch Off CC Cursor Control LC Lower Case IFS Interchange File Separator UC Upper Case IGS Interchange Group Separator RLF Reverse Line Feed IUS Interchange Unit Separator SMM Start of Manual Message IRS Interchange Record Separator RES Restore DS Digit Selector NL New Line SOS Start of Significance ID Idle BYP Bypass SM Set Mode RS Reader Top PN Punch On 3.2 CÁC MÃ PHÁT HIỆN LỖI Nhằm phát hiện lỗi người ta thêm vào dòng dữ liệu các bit kiểm tra. Phương pháp này gọi chung là kiểm tra lỗi dư thừa (Redundancy error check methode), từ dư thừa được dùng vì các bit thêm vào không phải là phần thông tin cần gửi đi. 3.2.1 Kiểm tra chẵn lẻ - Dùng kiểm tra chẵn lẻ để dò ra một bit sai: _____________________________________________________________________________________________________ Nguyễn Trung Lập Truyềndữ liệu ___________________________________________ Chương 3 Các loại mã trong truyềndữ liệu III - 5 Đây là phương pháp kiểm tra đơn giản nhất, bằng cách thêm vào sau chuỗi dữ liệu (thường là một ký tự) một bit sao cho tổng số bit 1 kể cả bit thêm vào là số chẵn (hoặc lẻ), ở máy thu kiểm tra lại tổng số này để biết có lỗi hay không. Phương pháp đơn giản nên chất lượng không cao, nếu số lỗi là chẵn thì máy thu không nhận ra. - Dùng kiểm tra chẵn lẻ để dò sai hai bit: Vì mỗi lần thực hiệ n kiểm tra chẵn lẻ cho phép dò ra một bit lỗi nên ta có thể nghĩ rằng nếu thực hiện nhiều phép kiểm tra đồng thời cho phép dò được nhiều lỗi. Thí dụ, để dò ra 2 lỗi của một chuỗi dữ liệu có thể thực hiện hai phép kiểm tra, một với các bit chẵn và một với các bit lẻ. Cho chuỗi dữ liệu: 01101000 Lần lượt thực hiện kiểm tra chẵn với các bit ở vị trí 1, 3, 5, 7 và các bit ở vị trí 2, 4, 6, 8. Gọi P 1 và P 2 là các bit kiểm tra: P 1 =0+1+1+0 = 0 và P 2 =1+0+0+0 = 1. Chuỗi dữ liệu phát: 01101000 01. Máy thu dò ra lỗi khi 2 bit liên tiếp bị sai. Tuy nhiên, nếu hai bit sai đều là 2 bit chẵn (hoặc 2 bit lẻ) thì máy thu cũng không dò ra. - Dùng kiểm tra chẵn lẻ để dò ra một chuỗi bit sai: Đôi khi nhiễu làm sai cả một chuỗi dữ liệu (ta gọi là burst errors), để dò ra được chuỗi bit sai này, người ta bắt chước cách lưu và truyềndữ liệu của máy tính (lưu từng bit của một byte trong các chip riêng để truyền trên các đường khác nhau và nơi nhận sẽ tái hợp) để thực hiện việc kiểm tra. Chuỗi dữ liệu sẽ được chia ra thành các khung (frames), th ực hiện kiểm tra cho từng khung, thay vì phát mỗi lần một khung, người ta phát các tổ hợp bit cùng vị trí của các khung, nhiễu có thể làm hỏng một trong các tổ hợp này và chuỗi bit sai này có thể được nhận ra ở máy thu. Thí dụ dưới đây minh họa cho việc kiểm tra phát hiện chuỗi dữ liệu sai: Gửi Nhận Số khung (hàng) 1 2 3 4 5 6 7 8 9 10 Số cột 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 2 3 4 5 Bit parity của từng hàng 1 0 1 1 0 0 0 1 1 0 6 → Nhiễu tác đông vào cột 4, làm cho tất cả các bit = 0 → Số khung (hàng) 1 2 3 4 5 6 7 8 9 10 Số cột 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 2 3 4 5 Bit parity của từng hàng 1 0 1* 1 0* 0* 0 1* 1* 0 6 Máy thu dò ra các khung có lỗi (các bit parity có dấu *) nhưng không xác định được cột nào bị sai do đó phải yêu cầu máy phát phát lại tất cả các cột - Kiểm tra khối: M ột cải tiến của kiểm tra chẵn lẻ là kiểm tra khối ( Block Check Character, BCC). Bản tin được viết thành khối và việc kiểm tra chẵn lẻ được thực hiện theo cả 2 chiều dọc ( Vertical Redundancy Check , VRC) và ngang (Longitudinal Redundancy Check, LRC) Gọi các bit của mỗi ký tự là b ij (i=1, , n là thứ tự các bit trong ký tự ; j=1, , m là thứ tự của ký tự) _____________________________________________________________________________________________________ Nguyễn Trung Lập Truyềndữ liệu ___________________________________________ Chương 3 Các loại mã trong truyềndữ liệu III - 6 R j là bit parity của ký tự thứ j, giả sử chọn parity chẵn, ta có : R j = b 1j + b 2j + + b nj C i là bít parity của tất cả bít thứ i C i = b i1 + b i2 + + b im + Tập hợp các bit R i (j = 1, ,m) dùng kiểm tra chiều dọc và tập hợp các bit C i (i = 1, ,n) dùng kiểm tra chiều ngang. (H 3.1) cho ta dạng của khối dữ liệu có thực hiện kiểm tra chẵn theo chiều ngang và dọc. bit 1 2 . . . . . . . bit n Parity Character 1 B 11 B 21 . . . . . . . B n1 R 1 10110111 ↓VRC Character 2 B 12 B 22 . . . . . . . B n2 R 2 11010111 00111010 11110000 10001011 Character m B 1m B 2m . . . . . . . b nm R m 01011111 Parity check char. C 1 C 2 . . . . . . . C n C n+1 01111110 ←LRC (H 3.1) Phương pháp kiểm tra khối cho phép phát hiện và sửa một lỗi vì xác định được vị trí của lỗi đó, chính là giao điểm của hàng và cột có bit sai. Máy thu có khả năng phát hiện hai lỗi sai trên cùng một hàng hoặc cột nhưng không xác định được vị trí bit lỗi. Ví dụ hai bit 1 và 3 của ký tự thứ nhất cùng sai thì bit kiểm tra VRC không phát hiện được nhưng bit LRC thì thấy ngay. Nếu bây giờ có thêm các bit 1 và 3 của ký tự thứ 5 cùng sai thì máy thu sẽ không phát hiện được, như vậy cũng còn trường hợp không phát hiện được lỗi nếu số lỗi là một số chẵn theo những vị trí xác định nào đó, tuy nhiên trường hợp này rất hiếm xảy ra. Tóm lại, dùng kiểm tra chẵn lẻ cho phép phát hiện lỗi trong một số trường hợp, tuy nhiên hiệu suất phát sẽ bị giảm và chỉ được dùng trong các hệ thống có vận tốc truyền thấp (bất đồng bộ ). Trong các hệ thống truyền đồng bộ người ta hay sử dụng mã CRC , mã này cho phép dò lỗi rất hiệu quả và hiệu suất truyền cũng cao. 3.2.2 Kiểm tra dư thừa theo chu kỳ Để cải thiện hơn nửa việc kiểm tra lỗi người ta dùng phương pháp kiểm tra dư thừa theo chu kỳ (Cyclic Redundancy Check, CRC) Nguyên tắc tạo mã CRC : Xét khung dữ liệu gồm k bit và nếu ta dùng n bit cho khung kiểm tra FCS (Frame check sequence) thì khung thông tin kể cả dữ liệu kiểm tra gồm (k+n) bit sao cho (k+n) bit này chia đúng cho một số P có (n+1) bit chọn trước (dùng phép chia Modulo-2). Ở máy thu khi nhận được khung dữ liệu, lại mang chia cho số P này và nếu phép chia đúng thì khung dữ liệu không chứa lỗi * Nhắc lại một số tính chất của phép toán Mod-2 : - Phép cộng Mod-2 là phép cộng nhị phân không nhớ, dưới đây là thí dụ về phép cộng và phép nhân 1111 11001 + 1010 x 11 _____________________________________________________________________________________________________ Nguyễn Trung Lập Truyềndữ liệu ___________________________________________ Chương 3 Các loại mã trong truyềndữ liệu III - 7 0101 11001 11001 101011 - Phép cộng Mod-2 được thực hiện bởi cổng EX-OR - Phép trừ Mod-2 giống như phép cộng - Nhân Mod-2 một số với 2 n tương ứng với dời số đó n bit về bên trái và thêm n bit 0 vào bên phải số đó, thí dụ 11001* 2 3 = 11001000 - Phép chia Mod-2 được thực hiện giống như phép chia thường nhưng nhớ là phép trừ trong khi chia được thực hiện như phép cộng. 3.2.2.1. Xác định mã CRC dùng thuật toán Mod-2 Gọi T = (k+n) bit là khung thông tin được phát , với n < k M = k bit dữ liệu, k bit đầu tiên của T F = n bit của khung FCS, n bit cuối của T P = (n+1) bit, số chia trong phép toán Số T được tạo ra bằng cách dời số M sang trái n bit rồi cộng với số F : T = 2 n M + F Chia số 2 n M cho P ta được : 2 n P R Q P M += Q là số thương và R là số dư Vì phép chia thực hiện với số nhị phân nên số dư luôn luôn ít hơn số chia 1 bit. Ta dùng số dư này làm số F, nghĩa là : T = 2 n M + R. Ở máy thu khi nhận được khối dữ liệu, mang chia cho P, kết quả số dư sẽ = 0 : P RR Q P R P R Q P T + +=++= Vì R + R = 0 nên T/P = Q Như vậy dùng số dư R của phép chia 2 n M cho P làm ký tự kiểm tra trong khung FCS thì chắc chắn T sẽ chia đúng cho P nếu bản tin không có lỗi. Thí dụ: Cho M = 1010001101 (10 bit) P = 110101 (6 bit) Số phải tìm R (5 bit) cho khung FCS được xác định như sau : - Nhân M với 2 5 cho : 101000110100000 - Thực hiện phép chia cho P 1101010110 110101 ⏐ 101000110100000 110101↓⏐⏐⏐⏐ 0111011 ⏐⏐⏐⏐ 110101↓↓⏐⏐ 00111010 ⏐⏐ 110101↓↓ 00111110 ⏐⏐ 110101↓↓ 00101100 ⏐ 110101↓ 0110010 110101↓ _____________________________________________________________________________________________________ Nguyễn Trung Lập Truyềndữ liệu ___________________________________________ Chương 3 Các loại mã trong truyềndữ liệu III - 8 0001110 ← R Ta có R = 01110, cộng với 2 5 M, sẽ cho số T phát đi là : T = 101000110100000 + 01110 = 101000110101110 Nếu bản tin không có lỗi T phải chia đúng cho P. Thực hiện phép chia T/P ta thấy số dư = 0 Tóm lại, để có một khung FCS n bit , người ta phải dùng một số P có n+1 bit để tạo số R có n bit dùng cho khung FCS. P được gọi là đa thức sinh (generator polynomial), dạng của nó do các giao thức qui định, tổng quát P phải có bit đầu và bit cuối là bit 1. 3.2.2.2. Dùng phép biểu diễn đa thức Để thấy quá trình hình thành mã CRC, ta có thể dùng phép biểu diễn một số nhị phân dưới dạng một đa thức của biến x với hệ số là các số nhị phân và bậc của x là giá trị chỉ vị trí của số nhị phân đó. Ví dụ số nhị phân 110101 có thể biểu diển bởi 1.x 5 + 1.x 4 + 0.x 3 + 1. x 2 + 0.x 1 + 1.x 0 = x 5 + x 4 + x 2 + 1 Chú ý mã số n bit cho bậc cao nhất của đa thức là n-1 Quá trình hình thành mã CRC thực hiện như sau : - Gọi M là đa thức biểu diễn thông tin cần truyền P là đa thức sinh, bậc n (chứa n+1 bit) Thực hiện phép chia x n P(x) R(x) Q(x) P(x) M(x) += Khung thông tin truyền đặc trưng bởi T(x) = x n M(x) + R(x) Lưu ý là nhân M(x) với x n tương đương với việc dời M(x) sang trái n bit - Ở máy thu thực hiện phép chia T(x) cho P(x) số dư phải bằng không P(x) R(x) P(x) R(x) Q(x) P(x) T(x) ++= Q(x) P(x) R(x) 1)(1Q(x) =++= Lấy lại thí dụ trên, bản tin 1010001101 tương ứng với đa thức M(x) = x 9 + x 7 + x 3 + x 2 +1 Số chia P = 110101 (6 bít) tương ứng với đa thức P(x) = x 5 + x 4 + x 2 +1 x 5 M(x) = x 14 + x 12 + x 8 + x 7 + x 5 Thực hiện phép chia : x 9 + x 8 + x 6 + x 4 + x 2 +x x 5 + x 4 + x 2 +1 ⏐ x 14 + x 12 + x 8 + x 7 + x 5 x 14 + x 13 + x 11 + x 9 x 13 + x 12 + x 11 + x 9 + x 8 + x 7 + x 5 x 13 + x 12 + x 10 + x 8 x 11 + x 10 + x 9 + x 7 + x 5 x 11 + x 10 + x 8 + x 6 x 9 + x 8 + x 7 + x 6 + x 5 x 9 + x 8 + x 6 +x 4 x 7 + x 5 + x 4 x 7 + x 6 + x 4 + x 2 x 6 + x 5 + x 2 x 6 + x 5 + x 3 + x x 3 + x 2 + x = R(x) _____________________________________________________________________________________________________ Nguyễn Trung Lập Truyềndữ liệu ___________________________________________ Chương 3 Các loại mã trong truyềndữ liệu III - 9 R(x) = x 3 + x 2 + x tương ứng với 01110 3.2.2.3. Khả năng dò sai của mã CRC Một lỗi xảy ra ở một vị trí nào đó trong khung dữ liệu làm đảo bit ở vị trí đó của khung, điều này tương đương với phép tính EX-OR bit đó và bit 1 (vì 0+1=1 và 1+1=0). Nếu gọi E là một khung có số lượng bit bằng với khung dữ liệu, trong đó chỉ các vị trí của bit lỗi = 1 và các bit khác = 0 thì khung thông tin Tr nhận được có thể viết. Tr = T + E. Thí dụ: T = 11010111010 Dạng đa thức: T(x) = x 10 + x 9 + x 7 + x 5 + x 4 + x 3 + x Giả sử bản tin sai ở các bit x 7 , x 5 và x 4 Khung E có dạng: E = 00010110000 E(x) = x 7 + x 5 + x 4 Khung dữ liệu nhận được: Tr = 11000001010 Tr(x) =x 10 + x 9 + x 3 + x Lưu ý phép cộng Modulo 2, tương ứng với phép toán EX-OR, nên x 7 +x 7 =(1+1)x 7 = 0 Ta có P E P T P ET += + Máy thu không nhận ra lỗi khi nào Tr(x) chia đúng cho P(x), hay chỉ khi E(x) chia đúng cho P(x). Vậy với điều kiện nào thì E(x) chia hết cho P(x) ? Ta sẽ xét một số trường hợp cụ thể: @- Giả sử bản tin chỉ sai một bit, đa thức E(x) có dạng x i , i là một số nguyên, E(x) chia đúng cho P(x) chỉ khi P(x) cũng có dạng x n . Người ta đã chọn P(x) có ít nhất là 2 số hạng nên E(x) không thể chia đúng cho P(x). Vậy Mã CRC luôn luôn cho phép máy thu dò ra một bit sai. @- Giả sử bản tin sai một chuỗi, nhưng có tổng số bit sai là số lẻ: đa thức E(x) chứa số lẻ bit 1 nên E(1) =1. Mặt khác, giả sử (x+1) là thừa số của P(x), ta có thể viết P(x) = (x+1)*H(x), H(x) là một đa thức. Ta cũng giả sử lỗi này không được dò ra, nghĩa là E(x) chia đúng cho P(x), hay E(x) = P(x)*K(x). Thay P(x) = (x+1)*H(x) vào E(x) được E(x) = (x+1)*H(x)*K(x), biểu thức này cho E(1) = 0. Điều này trái với giả thiết ở trên, hay nói cách khác, máy thu sẽ dò ra lỗi nếu ta chọn P(x) sao cho chia đ úng cho (x+1). Vậy Máy thu sẽ luôn luôn dò ra lỗi gồm nhiều bit và có tổng số bit lỗi là số lẻ nếu ta chọn P(x) chia đúng cho (x+1). @-Giả sử nhiễu làm sai một đoạn dữ liệu có chiều dài m ≤ bậc n của P(x) Giả sử chuỗi bit sai có vị trí từ thứ i đến thứ i+m-1, E(x) có dạng: E(x) = x i+m-1 + . . . . +x i = x i *(x m-1 + . . . +1) P(x) 1) (xx P(x) E(x) 1mi ++∗ = − P(x) không là thừa số của x i nên E(x) chỉ chia đúng cho P(x) khi x m-1 + . . . +1 chia đúng cho P(x). Vì m ≤ n hay m-1<n nên phép chia trên không thể là phép chia đúng. Vậy Máy thu luôn luôn dò ra lỗi nếu chuỗi dữ liệu sai có chiều dài ≤ bậc của P(x) @-Đoạn dữ liệu sai có chiều dài m >n _____________________________________________________________________________________________________ Nguyễn Trung Lập Truyềndữ liệu ___________________________________________ Chương 3 Các loại mã trong truyềndữ liệu III - 10 Từ kết quả trên P(x) 1) (xx P(x) E(x) 1mi ++∗ = − Nhưng bây giờ m-1 ≥ n nên x m-1 + . . . +1 có thể chia đúng cho P(x). Vậy vấn đề là có bao nhiêu cơ hội để điều này xảy ra. - Trường hợp m-1 = n hay (m=n+1). Vì bậc của P(x) là n nên để có phép chia đúng P(x) phải có dạng x n + . . . . . +1 với các số hạng giữa x n và 1 phải hoàn toàn giống với các số hạng của x m-1 + . . . . . +1 thì máy thu không dò được lỗi. Có n-1 số hạng giữa x n và 1 nên có 2 n-1 tổ hợp và nếu các tổ hợp này có xác suất xảy ra như nhau thì xác suất máy thu không nhận được lỗi sẽ là 1/2 n-1 . - Trường hợp m>n+1, ta chấp nhận kết quả xác suất này là 1/2 n . Lấy thí dụ mã CRC-32 (n=32), xác suất không dò ra một lỗi có chiều dài >33 bit là 1/2.10 32 (tương đương với khả năng dò ra lỗi là 99,99999998%). Tóm lại với n càng lớn việc máy thu không dò ra lỗi càng rất khó xảy ra. 3.2.2.4. Mạch tạo mã CRC. Thuật toán mod 2 được thực hiện bởi cổng EX-OR. Dời bit được thực hiện bởi thanh ghi dịch. Quan sát phép tính chia mod.2 của số 2 n M cho P(x) để có R(x) ta thấy đây là sự kết hợp của sự dời bit của số 2 n M với phép cộng Mod.2 của số P(x). Trong thí dụ trên, để tạo mã CRC với P(x) = 110101, người ta dùng mạch (H 3.2): Cho chuỗi dữ liệu là số 2 n M (gồm 15 bit, 101000110100000) vào mạch, sau 15 lần dời bit, kết quả trên các thanh ghi dịch chính là R(x). Mạch tạo mã trong trường hợp này gồm 5 thanh ghi dịch, ký hiệu A(x 5 ), B(x 4 ), C(x 3 ), D(x 2 ), E(x) . Mạch tạo mã CRC được thực hiện như sau: - Thanh ghi dịch chứa n bit, bằng với chiều dài của khung FCS. - Có nhiều nhất n cổng EX-OR. - Sự có mặt hay không của cổng EX-OR tương ứng với sự có mặt của số hạng lũy thừa bậc n trong đa thức P(x) (Riêng bậc cao nhất (n) của đa thức không kể ) (H 3.2 ) A B C D E Dữ liệu vào _____________________________________________________________________________________________________ Nguyễn Trung Lập Truyềndữ liệu [...]... các nhánh (H 3. 3e) _ Nguyễn Trung Lập Truyềndữ liệu _ Chương 3 Các loại mã trong truyềndữ liệu III - 14 (H 3. 3) Ta được bảng mã sau: Ký tự A B C D E Mã 01 100 101 11 00 Chiều dài trung bình của từ mã có thể tính như sau: 0,25*2 + 0,15 *3 + 0,10 *3 + 0,20*2 + 0 ,30 *2 = 2,25 bít/ký tự Do có sự chọn ngẫu nhiên khi các dữ kiện có cùng... trình tiếp tục với các khung mới (H 3. 5) là một thí dụ minh họa 576286 635 6 65755 632 47 8468564885 5129865566 5529968951 Khung thứ nhất 576286 635 6 65765 632 37 8468564885 5 139 865576 5529968951 Khung thứ nhì 0000000000 0 0 0 1 0 0 0 0 -1 0 0000000000 0010000010 0000000000 Khung phát đi là sai biệt giữa khung thứ nhì và khung thứ nhất 576286 635 6 65855 633 37 8468564885 5 139 765586 5529968951 Khung thứ ba 0000000000... Chương 3 Các loại mã trong truyềndữ liệu III - 20 (H 3. 6) (H 3. 7) minh họa một trong 16 lần thực hiện mã hóa Trong (H 3. 7) , các ký hiệu C64 chỉ 64 bit đã được mã hóa, L32 chỉ 32 bit đầu của C64, R32 là 32 bit cuối, K56 là khóa 56 bit Ngoài ra các ký hiệu như X48 chỉ chuỗi dữ liệu 48 bit có được từ một tác vụ trung gian trước đó Lưu ý là để đơn giản, chúng ta chỉ dùng cùng 1 ký hiệu cho các chuỗi dữ liệu... thành các nhóm 4 bít (X4) sau đó tổ hợp 8 nhóm này để thành chuỗi X32 X32 lại được EX-OR với L32, kết quả là X32 Cuối cùng chuỗi X32 tổ hợp với chuỗi bit R32 để cho mã 64 bit (C64) _ Nguyễn Trung Lập Truyềndữ liệu _ Chương 3 Các loại mã trong truyềndữ liệu III - 21 (H 3. 7) Tóm lại, giải thuật để có được một bản tin mật rất là phức... dừng lại, giải mã ký tự này, sau đó tiếp tục đọc chuỗi dữ liệu kế tiếp để tìm ra ký tự thứ hai _ Nguyễn Trung Lập Truyền dữ liệu _ Chương 3 Các loại mã trong truyền dữ liệu III - 15 (a) (b) (H 3. 4) 3. 3.2 Mã Run length Mã Huffman tuy có làm giảm số bit truyền đi nhưng nó đòi hỏi dữ liệu phải được tập hợp thành từng nhóm hay ký tự... thông tin (dữ liệu) Dưới đây là một ví dụ để thấy cách xác định mã Hamming: Giả sử chuỗi dữ liệu cần truyền gồm 4 bit như sau : 1 0 1 0 Với m = 4 , ta chọn n = 3, bất đẳng thức trên được thỏa Gọi các bit của mã Hamming là H1 H2 và H4 (1, 2, 4 là các vị trí mà ta sẽ đặt 3 bit của mã Hamming vào dòng dữ liệu) Gọi các bit dòng dữ liệu là X3, X5, X6, X7 Tổ hợp các bit dữ liệu và bit mã, ta đươc 1 2 3 4 5 6... xuất hiện lần lượt là 0,25; 0,15; 0,10; 0,20; 0 ,30 (H 3. 3a) là cây với 5 nút đơn ban đầu và trọng lượng tương ứng (H 3. 3b) ghép 2 cây B và C thành một cây mới với trọng lượng là tổng trọng lượng cây B và C (0,25) Bước tiếp theo ta có thể ghép cây mới hình thành với cây D hay cây A với D (H 3. 3c) ghép cây mới với D để được một cây trọng lượng là 0,45 (H 3. 3d) ghép cây E và A Cuối cùng, ghép hai cây mới... vị 64 bit dữ liệu và 56 bit khóa - Bước 2 gồm 16 lần thực hiện sự mã hóa tương tự nhau nhưng với các khóa khác nhau, dữ liệu ra của lần thực hiện trước sẽ là dữ liệu vào của lần thực hiện sau - Bước 3: Trộn 32 bit đầu và 32 bit cuối - Bước 4: Thực hiện lần chuyển vị cuối cùng (H 3 6) mô tả các bước tạo mã của DES _ Nguyễn Trung Lập Truyền dữ liệu ... được một bit lỗi 3.3 MÃ NÉN DỮ LIỆU Một vấn đề cũng luôn được quan tâm trong truyền dữ liệu là làm thế nào để giảm thiểu số bit cần thiết để truyền một bản tin - Như ta đã biết, phương pháp điều chế vi phân, ngoài tác dụng tốt về mặt đồng bộ còn có tác dụng giảm số bit đi rất nhiều nếu thông tin có tính lặp lại _ Nguyễn Trung Lập Truyền dữ liệu ... (H 3. 4b) Từ mã trung bình: 0,21*2 + 0,17 *3 + 0,15 *3 + 0,12 *3 + 0,1 *3 + 0,06*4 + 0,05*4 + 0,04*5 + 0, 03* 6 + 0,02*6 =3, 18 bít/sự kiện Số bit dùng mã hóa đã giảm khoảng 20% Một ưu thế của phương pháp Huffman là có thể lập trình để thực hiện việc mã hóa Trở lại Thí dụ 1, bây giờ giả sử chuỗi ký tự được phát đi là A B E C A D B C, tương ứng với chuỗi bit 01100001010111100101, máy thu khi nhận được chuỗi dữ . ___________________________________________ Chương 3 Các loại mã trong truyền dữ liệu III - 15 (a) (b) (H 3. 4) 3. 3.2 Mã Run length Mã Huffman tuy có làm giảm số bit truyền đi nhưng nó đòi hỏi dữ liệu phải được tập. mã 1 2 3 4 5 1 2 3 4 5 A F L Q V B G M R W C H N S X D IJ O T Y E K P U Z Thí dụ bản văn N O W I S T H E T I M E 33 43 25 42 34 44 32 51 44 42 23 51 _____________________________________________________________________________________________________. Truyền dữ liệu ___________________________________________ Chương 3 Các loại mã trong truyền dữ liệu III - 20 (H 3. 6) (H 3. 7) minh họa một trong 16 lần thực hiện mã hóa Trong (H 3. 7)