1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Advanced Microwave and Millimeter Wave technologies devices circuits and systems Part 1 doc

40 293 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 1,4 MB

Nội dung

I Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems Edited by Moumita Mukherjee In-Tech intechweb.org this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in any property arising out of the use of any materials, instructions, methods or ideas contained inside. After published articles. Publisher assumes no responsibility liability for any damage or injury to persons or the editors or publisher. No responsibility is accepted for the accuracy of information contained in the opinions expressed in the chapters are these of the individual contributors and not necessarily those of Abstracting and non-prot use of the material is permitted with credit to the source. Statements and Published by In-Teh In-Teh Olajnica 19/2, 32000 Vukovar, Croatia publication of which they are an author or editor, and the make other personal use of the work. © 2010 In-teh www.intechweb.org Additional copies can be obtained from: publica- tion@intechweb.org First published March 2010 Printed in India Technical Editor: Sonja Mujacic Cover designed by Dino Smrekar Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems, Edited by Moumita Mukherjee Authors: S. Azam, Q. Wahab, I.V. Minin, O.V. Minin, A. Crunteanu, J. Givernaud, P. Blondy, J C. Orlianges, C. Champeaux, A. Catherinot, K. Horio, I. Khmyrova, S. Simion, R. Marcelli, G. Bartolucci, F. Craciunoiu, A. Lucibello, G. De Angelis, A.A. Muller, A.C. Bunea, G.I. Sajin, M. Mukherjee, M. Suárez, M. Villegas, G. Baudoin, P. Varahram, S. Mohammady, M.N. Hamidon, R.M. Sidek, S. Khatun, A.Z. Nezhad, Z.H. Firouzeh, H. Mirmohammad-Sadeghi, G. Xiao, J. Mao, J Y. Lee, H K. Yu, C. Liu, K. Huang, G. Papaioannou, R. Plana, D. Dubuc, K. Grenier, M Á. González-Garrido, J. Grajal, C W. Tang, H C. Hsu, E. Cipriani, P. Colantonio, F. Giannini, R. Giofrè, S. Kahng, S. Kahng, A. Solovey, R. Mittra, E.L. Molina Morales, L. de Haro Ariet, I. Molenberg, I. Huynen, A C. Baudouin, C. Bailly, J M. Thomassin, C. Detrembleur, Y. Yu, W. Dou, P. Cruz, H. Gomes, N. Carvalho, A. Nekrasov, S. Laviola, V. Levizzani, M. Salovarda Lozo, K. Malaric, M.J. Azanza, A. del Moral, R.N. Pérez-Bruzón, V. Kvicera, M. Grabner p. cm. ISBN 978-953-307-031-5 V Preface Today, the development and use of microwave (3-30 GHz) and millimeter wave (30-300 GHz) band is being actively promoted. Microwave has been used extensively since the Second World War when the sources were based on vacuum devices. Microwaves are presently playing a vital role in RADAR, land and satellite based communication and also have wide civilian and defence applications. Two typical areas of application of millimeter-wave are information communication and remote sensing. This wide spectrum of application is making the microwave and millimeter wave system development one of the most advanced technologies of radio science, especially in view of the ever increasing demand of communication. Studies on Microwave and Millimeter waves go back a long way. Advanced studies on MM-wave were rst conducted about 100 years ago by Acharya J. C. Bose of the Presidency College, University of Calcutta in India. He measured the refractive index of natural crystal in the 60 GHz band, developing a variety of MM-wave components in the process. Now-a-days researchers all over the world are focusing their attention in the terahertz frequency region of the electromagnetic spectrum, which is typically dened in the frequency range 100 GHz to 10 THz, corresponding to a wavelength range of 3 mm to 30 microns. The Millimeter-Wave region overlaps a portion of the Terahertz region. Following the development of coherent sources and detectors, there has been growing interest in the role of terahertz technology for security and defence. The terahertz region offers a huge expanse of unused bandwidth, which currently presents a signicant advantage for both security and defense initiatives. The ability of terahertz radiation to probe intermolecular interactions, large amplitude vibrations and rotational modes, in addition to showing polarization sensitivity makes terahertz radiation a unique and diverse region of the electromagnetic spectrum. The additional ability of both Terahertz and MM-Wave radiation to see through common materials, such as thick smoke, fog and dust, which are often considered as opaque in other regions of the electromagnetic spectrum offers further advantages over other optical techniques. This book is planned to publish with an objective to provide a state-of-the-art reference book in the areas of advanced microwave, MM-Wave and THz devices, antennas and systemtechnologies for microwave communication engineers, Scientists and post-graduate students of electrical and electronics engineering, applied physicists. This reference book is a collection of 30 Chapters characterized in 3parts: Advanced Microwave and MM-wave devices, integrated microwave and MM-wave circuits and Antennas and advanced microwave computer techniques, focusing on simulation, theories and applications. This book provides a comprehensive overview of the components and devices used in microwave and MM-Wave circuits, including microwave transmission lines, resonators, lters, ferrite devices, solid state VI devices, transistor oscillators and ampliers, directional couplers, microstripeline components, microwave detectors, mixers, converters and harmonic generators, and microwave solid-state switches, phase shifters and attenuators. Several applications area also discusses here, like consumer, industrial, biomedical, and chemical applications of microwave technology. It also covers microwave instrumentation and measurement, thermodynamics, and applications in navigation and radio communication. Editor: Moumita Mukherjee VII Contents Preface V 1. ThepresentandfuturetrendsinHighPowerMicrowaveand MillimeterWaveTechnologies 001 S.AzamandQ.Wahab 2. Explosivepulsedplasmaantennasforinformationprotection 013 IgorV.MininandOlegV.Minin 3. Exploitingthesemiconductor-metalphasetransitionofVO2materials: anoveldirectiontowardstuneabledevicesandsystemsfor RFmicrowaveapplications 035 CrunteanuAurelian,GivernaudJulien,BlondyPierre,OrliangesJean-Christophe, ChampeauxCorinneandCatherinotAlain 4. AnalysisofParasiticEffectsinAlGaN/GaNHEMTs 057 KazushigeHorio 5. StudyofPlasmaEffectsinHEMT-likeStructuresforTHzApplicationsby EquivalentCircuitApproach 075 IrinaKhmyrova 6. CompositeRight/LeftHanded(CRLH)baseddevicesformicrowaveapplications 089 StefanSimion,RomoloMarcelli,GiancarloBartolucci,FloreaCraciunoiu, AndreaLucibello,GiorgioDeAngelis,AndreiA.Muller,AlinaCristinaBunea, GheorgheIoanSajin 7. WideBandGapSemiconductorBasedHighpowerATTDiodesInThe MM-waveandTHzRegime:DeviceReliability,ExperimentalFeasibility andPhoto-sensitivity 113 MoumitaMukherjee 8. RFandmicrowaveband-passpassiveltersformobiletransceiverswith afocusonBAWtechnology 151 MarthaSuárez,MartineVillegas,GenevièveBaudoin 9. DemonstrationOfAPowerAmplierLinearizationBasedOnDigital PredistortionInMobileWimaxApplication 175 PooriaVarahram,SomayehMohammady,M.NizarHamidon,RoslinaM.Sidek andSabiraKhatun VIII 10. AFastMethodtoComputeRadiationFieldsofShaped ReectorAntennasbyFFT 189 AbolghasemZeidaabadiNezhad,ZakerHosseinFirouzeh andHamidMirmohammad-Sadeghi 11. NumericalAnalysisoftheElectromagneticShieldingEffectof ReinforcedConcreteWalls 205 GaobiaoXiaoandJunfaMao 12. 52-GHzMillimetre-WavePLLSynthesizer 223 Ja-YolLeeandHyun-KyuYu 13. MetamaterialTransmissionLineanditsApplications 249 ChangjunLiuandKamaHuang 14. PhysicsofCharginginDielectricsandReliabilityofCapacitive RF-MEMSSwitches 275 GeorgePapaioannouandRobertPlana 15. RF-MEMSbasedTunerformicrowaveandmillimeterwaveapplications 303 DavidDubucandKatiaGrenier 16. BroadbandGaNMMICPowerAmpliersdesign 325 María-ÁngelesGonzález-GarridoandJesúsGrajal 17. DesignofMulti-PassbandBandpassFiltersWithLow-Temperature Co-FiredCeramicTechnology 343 Ching-WenTangandHuan-ChangHsu 18. TheSwitchedModePowerAmpliers 359 ElisaCipriani,PaoloColantonio,FrancoGianniniandRoccoGiofrè 19. Developingthe150%-FBWKu-BandLinearEqualizer 389 SungtekKahng 20. UltrawidebandBandpassFilterusingCompositeRight-and Left-HandednessLineMetamaterialUnit-Cell 395 SungtekKahng 21. ExtendedSourceSizeCorrectionFactorinAntennaGainMeasurements 403 AlekseySoloveyandRajMittra 22. ElectrodynamicAnalysisofAntennasinMultipathConditions 429 EddyLuisMolinaMoralesandLeandrodeHaroAriet 23. FoamedNanocompositesforEMIShieldingApplications 453 IsabelMolenberg,IsabelleHuynen,Anne-ChristineBaudouin,ChristianBailly,Jean-Michel ThomassinandChristopheDetrembleur 24. Pseudo-BesselBeamsinMillimeterandSub-millimeterRange 471 YanzhongYuandWenbinDou IX 25. ReceiverFront-EndArchitectures–AnalysisandEvaluation 495 PedroCruz,HugoGomesandNunoCarvalho 26. MicrowaveMeasurementoftheWindVectoroverSeabyAirborneRadars 521 AlexeyNekrasov 27. PassiveMicrowaveRemoteSensingofRainfromSatelliteSensors 549 SanteLaviolaandVincenzoLevizzani 28. UseofGTEM-cellandWirePatchCellincalculatingthermaland non-thermalbiologicaleffectsofelectromagneticelds 573 MarijaSalovardaLozoandKresimirMalaric 29. BioelectricEffectsOfLow-FrequencyModulatedMicrowaveFields OnNervousSystemCells 589 MaríaJ.Azanza,A.delMoralandR.N.Pérez-Bruzón 30. RainAttenuationonTerrestrialWirelessLinksinthemmFrequencyBands 627 VaclavKviceraandMartinGrabner X [...]... these devices on the basis of device characteristics is given in Table 1 Pmax Drain Eff Gain Operating Life time (kW) % (dB) voltage (kV) (hours) SSPDs 0.5 50-65 10 -17 0.025-0 .1 50x103 PGTs 0.5 -10 50-60 10 -13 0.5 -10 (3 -10 )x103 EBDs 0 .1- 2000 25-60 20-40 25 -10 0 (10 -20)x103 Device Type Table 1 Comparison of power devices 4 Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits. ..The present and future trends in High Power Microwave and Millimeter Wave Technologies 1 1 X The present and future trends in High Power Microwave and Millimeter Wave Technologies 1) Department S Azam1, 3 and Q Wahab1, 2, 4 of Physics (IFM), Linköping University, SE-5 81 83, Linköping, Sweden 2) Swedish Defense Research Agency (FOI), SE-5 81 11, Linköping, Sweden 3) Department of Electrical... http://www.toshiba.co.jp/about/press/2009 _11 / pr_j28 01. htm Schuh, P et al "Advanced High Power Amplifier Chain for X-Band T/R-Modules based on GaN MMICs," The 1st European Microwave Integrated Circuits Conference, 2006 Page(s):2 41 - 244 12 [ 31] [32] [33] [34] Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems Schuh, P et al "GaN MMIC based T/R-Module Front-End for X-Band Applications,"... frequency 6 Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems fmax of 230 GHz in AlGaN/GaN HEMTs with a gate length of 10 0 nm [13 ] GaN MMICs up to Ka-Band have been presented [16 -19 ], showing power densities up to 5 W/mm at 50 Ω load impedance AlGaN/GaN HEMTs grown on silicon (11 1) high-resistivity substrates with cutoff frequencies fT = 90 GHz and fMAX = 10 5... Device Lett., vol 27, no 1, pp 13 15 , Jan 2006 The present and future trends in High Power Microwave and Millimeter Wave Technologies [14 ] [15 ] [16 ] [17 ] [18 ] [19 ] [20] [ 21] [22] [23] [24] [25] [26] [27] [28] [29] [30] 11 M Micovic, A Kurdoghlian, P Hashimoto, M Hu, M Antcliffe, P J Willadsen, W S Wong, R Bowen, I Milosavljevic, A Schmitz, M Wetzel, and D H Chow, BGaN HFET for W-band power applications,[... potential to disrupt at least part of the very large VEDs market and could replace at least 2 Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems some microwave and millimeter wave VEDs.The hybrid and MMIC amplifiers based on AlGaN/GaN technology has demonstrated higher output power levels, broader bandwidth, increased power added efficiency and higher operating... microwave and mm wave technologies Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems 10 9 Acknowledgement The authors wish to acknowledge efforts of the Government of Oman for the financial support of this work and creating and financing the Sultan Qabos IT Chair at NED University of Engineering and Technology, Karachi, Pakistan 10 References [1] [2] [3] [4]... of matter, now called plasma, in 18 79 1 14 Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems biggest drawback is data transmission security When plasma is not energized, it is difficult to detect by radar Even when it is energized, it is transparent to the transmissions above the plasma frequency, which falls in the microwave region This is a fundamental... standby mode and achieve high output of over 10 0 W, that features a new structure ideal for use in amplifiers for microwave and millimeter- wave transmissions, frequency ranges for which usage is expected to grow This technological advance will contribute to higher output and lower power consumption in microwave and millimeter- wave transmission amplifiers for high-speed wireless communications [ 21] ... fully understood [5] 16 Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems It is shown [5] that the pulsed current in the solenoid couples its energy through excite transiently varied electric and magnetic fields in the plasma jets, which are produced by explosives The electric and magnetic fields accelerate/decelerate electrons and cause the plasma jets . I Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and. 0.025-0 .1 50x10 3 PGTs 0.5 -10 50-60 10 -13 0.5 -10 (3 -10 )x10 3 EBDs 0 .1- 2000 25-60 20-40 25 -10 0 (10 -20)x10 3 Table 1. Comparison of power devices Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems4 3 least part of the very large VEDs market and could replace at least 1 Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems2 some microwave and millimeter

Ngày đăng: 21/06/2014, 10:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN