1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article On Hilbert-Pachpatte Multiple Integral Inequalities" pdf

7 269 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 470,99 KB

Nội dung

Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 820857, 7 pages doi:10.1155/2010/820857 Research Article On Hilbert-Pachpatte Multiple Integral Inequalities Changjian Zhao, 1 Lian-ying Chen, 1 and Wing-Sum Cheung 2 1 Department of Mathematics, College of Science, China Jiliang University, Hangzhou 310018, China 2 Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China Correspondence should be addressed to Changjian Zhao, chjzhao@163.com Received 11 March 2010; Revised 16 July 2010; Accepted 28 July 2010 Academic Editor: N. Govil Copyright q 2010 Changjian Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We establish some multiple integral Hilbert-Pachpatte-type inequalities. As applications, we get some inverse forms of Pachpatte’s inequalities which were established in 1998. 1. Introduction In 1934, Hilbert 1 established the following well-known integral inequality. If f ∈ L p 0, ∞, g ∈ L p 0, ∞, f, g ≥ 0, p>1and1/p  1/q  1, then  ∞ 0  ∞ 0 f  x  g  x  x  y dx dy ≤ π sin  π/p    ∞ 0 f p xdx  1/p   ∞ 0 g q xdx  1/q , 1.1 where π/sinπ/p is the best value. In recent years, considerable attention has been given to various extensions and improvements of the Hilbert inequality form different viewpoints 2–10. In particular, Pachpatte 11 proved some inequalities similar to Hilbert’s integral inequalities in 1998. In this paper, we establish some new multiple integral H ilbert-Pachpatte-type inequalities. 2 Journal of Inequalities and Applications 2. Main Results Theorem 2.1. Let h i ≥ 1,letf i σ i  ∈ C 1 x i , 0, 0, ∞, i  1, ,n,wherex i are positive real numbers, and define F i s i   0 s i f i σ i dσ i ,fors i ∈ x i , 0. Then for 1/α i  1/β i  1, 0 <β i < 1 and  n i1 1/α i 1/α,  0 x 1 ···  0 x n  n i1 F h i i  s i   α  n i1 1/α i −s i   1/α ds 1 ···ds n ≥ n  i1  −x i  1/α i h i   0 x i  s i −x i   F h i −1 i s i f i s i   β i ds i  1/β i . 2.1 Proof. From the hypotheses and in view of inverse H ¨ older integral inequality see 12,itis easy to observe that n  i1 F h i i  s i   n  i1 h i  0 s i F h i −1 i  σ i  f i  σ i  dσ i ≥ n  i1 h i  −s i  1/α i   0 s i  F h i −1 i σ i f i σ i   β i dσ i  1/β i ,s i ∈  x i , 0  ,i 1, ,n. 2.2 Let us note the following means inequality: n  i1 m 1/α i i ≥  α n  i1 1 α i m i  1/α ,m>0. 2.3 We obtain that  n i1 F h i i  s i   α  n i1 1/α i −s i   1/α ≥ n  i1 h i   0 s i  F h i −1 i σ i f i σ i   β i dσ i  1/β i . 2.4 Integrating both sides of 2.4 over s i from x i i  1, 2, ,n to 0 and using the special case of inverse H ¨ older integral inequality, we observe that  0 x 1 ···  0 x n  n i1 F h i i  s i   α  n i1 1/α i −s i   1/α ds 1 ···ds n ≥ n  i1 h i  0 x i   0 s i  F h i −1 i σ i f i σ i   β i dσ i  1/β i ds i ≥ n  i1 h i  −x i  1/α i   0 x i   0 s i  F h i −1 i σ i f i σ i   β i dσ i  ds i  1/β i  n  i1  −x i  1/α i h i   0 x i  s i − x i   F h i −1 i s i f i s i   β i ds i  1/β i . 2.5 The proof is complete. Journal of Inequalities and Applications 3 Remark 2.2. Taking n  2, β i  1/2to2.1, 2.1 changes to  0 x 1  0 x 2 F h 1 1  s 1  F h 2 2  s 2   s 1  s 2  −2 ds 1 ds 2 ≥ 4h 1 h 2  x 1 x 2  −1   0 x 1 s 1 − x 1   F h 1 −1 1  s 1  f 1  s 1   1/2 ds 1  2 ×   0 x 2 s 2 − x 2   F h 2 −1 2  s 2  f 2  s 2   1/2 ds 2  2 . 2.6 This is just an inverse inequality similar to the following inequality which was proved by Pachpatte 11:  x 0  y 0 F h  s  G l  t  s  t ds dt ≤ 1 2 hl  xy  1/2   x 0 x − s  F h−1  s  f  s   2 ds  1/2 ×   y 0 y − t  G l−1  t  g  t   2 dt  1/2 . 2.7 Theorem 2.3. Let f i σ i , F i s i , α i , and β i be as in Theorem 2.1.Letp i σ i  be n positive functions defined for σ i ∈ x i , 0i  1, 2, ,n, and define P i s i   0 s i p i σ i dσ i , where x i are positive real numbers. Let φ i i  1, 2, ,n be n real-valued nonnegative, concave, and super-multiplicative functions defined on R  .Then  0 x 1 ···  0 x n  n i1 φ i  F i  s i   α  n i1 1/α i −s i   1/α ds 1 ···ds n ≥ L  x 1 , ,x n  n  i1   0 x i  s i − x i   p i  s i  φ i  f i  s i  p i  s i   β i ds i  1/β i , 2.8 where L  x 1 , ,x n   n  i1   0 x i  φ i  P i s i   P i s i   α i ds i  1/α i . 2.9 4 Journal of Inequalities and Applications Proof. By using Jensen integral inequality see 11 and inverse H ¨ older integral inequality see 12 and noticing that φ i i  1, 2, ,n are n real-valued super-multiplicative functions, it is easy to observe that φ i  F i  s i   φ i ⎛ ⎝ P i  s i   0 s i p i  σ i   f i  σ i  /p i  σ i   dσ i  0 s i p i  σ i  dσ i ⎞ ⎠ ≥ φ i  P i  s i  φ i ⎛ ⎝  0 s i p i  σ i   f i  σ i  /p i  σ i   dσ i  0 s i p i  σ i  dσ i ⎞ ⎠ ≥ φ i  P i  s i  P i  s i   0 s i p i  σ i  φ i  f i  σ i  p i  σ i   dσ i ≥  φ i  P i  s i  P i  s i    −s i  1/α i   0 s i  p i σ i φ i  f i σ i  p i σ i   β i dσ i  1/β i . 2.10 In view of the means inequality and integrating two sides of 2.10 over s i from x i i  1, 2, ,n to 0 and noticing H ¨ older integral inequality, we observe that  0 x 1 ···  0 x n  n i1 φ i  F i  s i   α  n i1 1/α i −s i   1/α ds 1 ···ds n ≥ n  i1  0 x i  φ i  P i  s i  P i  s i     0 s i  p i σ i φ i  f i σ i  p i σ i   β i dσ i  1/β i ds i ≥ n  i1   0 x i  φ i  P i s i   P i s i   α i ds i  1/α i   0 x i  0 s i  p i σ i φ i  f i σ i  p i σ i   β i dσ i ds i  1/β i  L  x 1 , ,x n  n  i1   0 x i  s i − x i   p i  s i  φ i  f i  s i  p i  s i   β i ds i  1/β i . 2.11 This completes the proof of Theorem 2.3. Remark 2.4. Taking n  2, β i  1/2to2.8, 2.8 changes to  0 x 1  0 x 2 φ 1  F 1  s 1  φ 2  F 2  s 2   s 1  s 2  −2 ds 1 ds 2 ≥ L  x 1 ,x 2  ⎛ ⎝  0 x 1  s 1 − x 1   p 1  s 1  φ 1  f 1  s 1  p 1  s 1   1/2 ds 1 ⎞ ⎠ 2 ×   0 x 2  s 2 − x 2   p 2  s 2  φ 2  f 2  s 2  p 2  s 2   1/2 ds 2  2 , 2.12 Journal of Inequalities and Applications 5 where L  x 1 ,x 2   4   0 x 1  φ 1  P 1  s 1  P 1  s 1   −1 ds 1  −1   0 x 2  φ 2  P 2  s 2  P 2  s 2   −1 ds 2  −1 . 2.13 This is just an inverse inequality similar to the following inequality which was proved by Pachpatte 11:  x 0  y 0 φ  F  s  ψ  G  t  s  t ds dt ≤ L  x, y    x 0  x − s   p  s  φ  f  s  p  s   2 ds  1/2 ×   y 0  y − t   q  t  ψ  g  t  q  t   2 dt  1/2 , 2.14 where L  x, y   1 2   x 0  φ  P  s  P  s   2 ds  1/2   y 0  ψ  Q  t  Q  t   2 dt  1/2 . 2.15 Theorem 2.5. Let f i σ i , p i σ i , P i σ i , α i , and β i be as Theorem 2.3, and define F i s i  1/P i s i   0 s i p i σ i f i σ i dσ i for σ i ,s i ∈ x i , 0,wherex i are positive real numbers. Let φ i i  1, 2, ,n be n real-valued, nonnegative, and concave functions on R  .Then  0 x 1 ···  0 x n  n i1 P i  s i  φ i  F i  s i   α  n i1 1/α i −s i   1/α ds 1 ···ds n ≥ n  i1 x 1/α i i   0 x i  s i − x i   p i s i φ i f i s i   β i ds i  1/β i . 2.16 Proof. From the hypotheses and by using Jensen integral inequality and the inverse H ¨ older integral inequality, we have φ i  F i  s i   φ i  1 P i  s i   0 s i p i  σ i  f i  σ i  dσ i  ≥ 1 P i  s i   0 s i p i  σ i  φ i  f i  σ i   dσ i ≥ 1 P i  s i   −s i  1/α i   0 s i  p i σ i φ i  f i σ i   β i dσ i  1/β i . 2.17 6 Journal of Inequalities and Applications Hence  0 x 1 ···  0 x n  n i1 P i  s i  φ i  F i  s i   α  n i1 1/α i −s i   1/α ds 1 ···ds n ≥ n  i1  0 x i   0 s i  p i σ i φ i f i σ i   β i dσ i  1/β i ds i ≥ n  i1 x 1/α i i   0 x i  0 s i  p i σ i φ i f i σ i   β i dσ i ds i  1/β i  n  i1  −x i  1/α i   0 x i  s i − x i   p i s i φ i f i s i   β i ds i  1/β i . 2.18 Remark 2.6. Taking n  2, β i  1/2to2.16, 2.16 changes to  0 x 1  0 x 2 P 1  s 1  P 2  s 2  φ 1  F 1  s 1  φ 2  F 2  s 2   s 1  s 2  −2 ds 1 ds 2 ≥ 4  x 1 x 2  −1   0 x 1  s 1 − x 1   p 1  s 1  φ 1  f 1  s 1   1/2 ds 1  2 ×   0 x 2  s 2 − x 2   p 2  s 2  φ 2  f 2  s 2   1/2 ds 2  2 . 2.19 This is just an inverse inequality similar to the following inequality which was proved by Pachpatte 11:  x 0  y 0 P  s  Q  t  φ  F  s  ψ  G  t  s  t ds dt ≤ 1 2  xy  1/2   x 0  x − s   p  s  φ  f  s   2 ds  1/2   y 0  y − t  q  t  ψ  g  t   2 dt  1/2 . 2.20 Remark 2.7. In 2.20,ifp 1 s 1 p 2 s 2 1, then P 1 s 1 s 1 , P 2 s 2 s 2 . Therefore 2.20 changes to  0 x 1  0 x 2 φ 1  F 1  s 1  φ 2  F 2  s 2   s 1  s 2  −2 ds 1 ds 2 ≥ 4  x 1 x 2  −1   0 x 1  s 1 − x 1   φ 1  f 1  s 1   1/2 ds 1  2   0 x 2  s 2 − x 2   φ 2  f 2  s 2   1/2 ds 2  2 . 2.21 Journal of Inequalities and Applications 7 This is just an inverse inequality similar to the following Inequality which was proved by Pachpatte 11:  x 0  y 0 φ  F  s  ψ  G  t   st  −1  s  t  ds dt ≤ 1 2  xy  1/2   x 0  x − s   φ  f  s   2 ds  1/2   y 0  y − t  ψ  g  t   2 dt  1/2 . 2.22 Acknowledgments This paper is supported by the National Natural Sciences Foundation of China 10971205. This paper is partially supported by the Research Grants Council of the Hong Kong SAR, China Project no. HKU7016/07P and an HKU Seed Grant for Basic Research. References 1 G. H. Hardy, J. E. Littlewood, and G. P ´ olya, Inequalities, Cambridge University Press, Cambridge, Mass, USA, 1952. 2 B. Yang, “On a relation between Hilbert’s inequality and a Hilbert-type inequality,” Applied Mathematics Letters, vol. 21, no. 5, pp. 483–488, 2008. 3 G. A. Anastassiou, “Hilbert-Pachpatte type general multivariate integral inequalities,” International Journal of Applied Mathematics, vol. 20, no. 4, pp. 549–573, 2007. 4 B. C. Yang, “Hilbert’s inequality with some parameters,” Acta Mathematica Sinica,vol.49,no.5,pp. 1121–1126, 2006. 5 J. C. Kuang and L. Debnath, “The general form of Hilbert’s inequality and its converses,” Analysis Mathematica, vol. 31, no. 3, pp. 163–173, 2005. 6 C J. Zhao and W S. Cheung, “Sharp integral inequalities involving high-order partial derivatives,” Journal of Inequalities and Applications, vol. 2008, Article ID 571417, 10 pages, 2008. 7 Z. Changjian, J. Pecari ´ c, and L. Gangsong, “Inverses of some new inequalities similar to Hilbert’s inequalities,” Taiwanese Journal of Mathematics, vol. 10, no. 3, pp. 699–712, 2006. 8 B. Yang, “On new generalizations of Hilbert’s inequality,” Journal of Mathematical Analysis and Applications, vol. 248, no. 1, pp. 29–40, 2000. 9 J. C. Kuang, “On new extensions of Hilbert’s integral inequality,” Journal of Mathematical Analysis and Applications, vol. 235, no. 2, pp. 608–614, 1999. 10 M. Gao and B. Yang, “On the extended Hilbert’s inequality,” Proceedings of the American Mathematical Society, vol. 126, no. 3, pp. 751–759, 1998. 11 B. G. Pachpatte, “On some new inequalities similar to Hilbert’s inequality,” Journal of Mathematical Analysis and Applications, vol. 226, no. 1, pp. 166–179, 1998. 12 E. F. Beckenbach and R. Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Bd. 30, Springer, Berlin, Germany, 1961. . Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 820857, 7 pages doi:10.1155/2010/820857 Research Article On Hilbert-Pachpatte Multiple Integral Inequalities Changjian. Yang, On new generalizations of Hilbert’s inequality,” Journal of Mathematical Analysis and Applications, vol. 248, no. 1, pp. 29–40, 2000. 9 J. C. Kuang, On new extensions of Hilbert’s integral. Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original

Ngày đăng: 21/06/2014, 07:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN