Microsoft Word lan chinh sua ch lam doc LỜI CẢM ƠN Luận văn thạc sĩ chuyên nghành công trình thuỷ lợi với đề tài “Nghiên cứu chế độ thuỷ lực chọn bể tiêu năng cho tràn xả lũ hạ Sê San 2” được hoàn thà[.]
TỔNG QUAN VỀ TRÀN XẢ LŨ
TỔNG QUAN TÌNH HÌNH XÂY DỰNG TRÀN XẢ LŨ Ở VIỆT NAM VÀ TRÊN THẾ GIỚI
Ở VIỆT NAM VÀ TRÊN THẾ GIỚI
Trong hệ thống công trình thủy lợi, bộ phận tháo nước đóng vai trò quan trọng, giúp kiểm soát lượng nước lũ thừa khi hồ đạt mực nước tối đa Nó không chỉ có khả năng tháo nước hoàn toàn hoặc một phần từ hồ chứa để thực hiện sửa chữa và nạo vét, mà còn cung cấp nước cho khu vực hạ lưu, đảm bảo hoạt động hiệu quả của toàn bộ công trình.
Các công trình tháo ở Việt Nam rất đa dạng về thể loại và hình thức kết cấu Kể từ năm 2002, nhiều dự án thiết kế và xây dựng công trình thuỷ lợi, thuỷ điện đã được triển khai, bao gồm các công trình hồ chứa và xả lũ quy mô lớn Một số dự án tiêu biểu như thuỷ điện Sê San 3, Na Hang (Tuyên Quang), Rào Quán (Quảng Trị), Plêikrông, Sê San 3A, và Sê San.
4, A Vương, Buôn Kướp, Đại Ninh, Sêrêpôk, Buôn Tua Sa, Bản Vẽ, Sông Ba
Trong gần 20 năm qua, Việt Nam đã phát triển nhanh chóng các công trình đập cao và hồ chứa lớn như Hạ, An Khê-Ka Năc, Đồng Nai 3, Đồng Nai 4, và nhiều công trình khác với dung tích từ hàng triệu đến hàng chục tỷ m3 nước Các công trình này có khả năng xả nước từ hàng ngàn đến vài chục ngàn m3/s Chúng ta đã áp dụng thành công các công nghệ thiết kế và thi công tiên tiến như đập đá đổ bản mặt bê tông (CFRD), đập bê tông đầm lăn (RCC), và đập bê tông truyền thống (CVC) khối lớn cấp phối liên tục Nhiều đập đã được đưa vào vận hành an toàn, như đập hồ chứa nước thủy lợi-thủy điện Quảng Trị, thủy điện Tuyên Quang, Sê San 3, Sê San 3A, và Plêikrông Trước đó, một số đập lớn như Hòa Bình, Thác Bà, Trị An, Thác Mơ, Ialy, Sông Hinh, Vĩnh Sơn, và Dầu Tiếng cũng đã được xây dựng.
A Yun Hạ, Phú Ninh đã thiết kế nhiều dạng công trình tháo lũ khác nhau, phù hợp với điều kiện địa hình, địa chất và thuỷ văn của từng công trình Các công trình này bao gồm tràn xả mặt sông như Sê San 3, Sê San 3A, Sê San 4, Plêikrông, A Vương, Bản Chát, Huội Quảng, và các công trình xả mặt kết hợp với xả sâu như Hoà Bình, Sơn La, Tuyên Quang Ngoài ra, còn có đường tràn dọc tại các địa điểm như Ialy, Sông Hinh, Hàm Thuận-Đa Mi, Tuyên Quang, Rào Quán, Đại Ninh.
Về hình thức tiêu năng sau công trình tháo nước, thường có 3 dạng tiêu năng được áp dụng:
Tiêu năng đáy là phương pháp sử dụng sức cản nội bộ của nước nhảy để giảm năng lượng dòng chảy Phương pháp này có thể được áp dụng qua kiểu bể hoặc kết hợp giữa tường và bể Tiêu năng đáy thường được sử dụng cho các công trình vừa và nhỏ, đặc biệt khi mực nước hạ lưu lớn và địa chất nền công trình chủ yếu là đá yếu.
A Lưới là một loại hình công trình có khả năng tiêu tán hoàn toàn năng lượng dư thừa Tuy nhiên, nó yêu cầu khối lượng xây dựng lớn và chi phí cao, đặc biệt là đối với các dự án quy mô lớn.
Tiêu năng mặt là dạng chảy mà chỉ đạt đến đáy sau khi mở rộng hoàn toàn Chế độ chảy mặt ở hạ lưu thường tạo ra sóng giảm dần, gây xói lở trong khu vực này Động năng thừa thường phân tán trên một chiều dài lớn hơn so với chế độ chảy đáy Chế độ chảy mặt có thể được áp dụng cho nền đá, khi không cần gia cố hạ lưu, giảm chiều dài gia cố, và khi mực nước hạ lưu cao với sự biến đổi ít.
TỔNG QUAN CÁC NGHIÊN CỨU VỀ TIÊU NĂNG
1.2.1 Khái quát chung Đặc điểm nổi bật của công trình tháo nước là khi dòng chảy đổ từ thượng lưu qua công trình về hạ lưu, nguồn năng lượng của dòng chảy khá lớn sẽ tạo ra chế độ thuỷ lực nối tiếp phức tạp, ảnh hưởng trực tiếp đến ổn định của công trình Đặc tính thuỷ lực cơ bản của dòng chảy qua công trình tháo là êm ở thượng lưu (Fr < 1); chảy xiết trên đoạn chuyển tiếp (Fr > 1) và dần trở lại trạng thái tự nhiên sau khi chảy vào sông thiên nhiên Động năng thừa của dòng chảy đổ từ thượng lưu qua công trình xuống hạ lưu là rất lớn nên cần thiết phải giải quyết tiêu năng trước khi dòng chảy nối tiếp về hạ lưu Nguyên tắc của các giải pháp nối tiếp tiêu năng là phải tìm được biện pháp tiêu hao được năng lượng thừa của dòng chảy tới mức tối đa, điều chỉnh lại sự phân bộ vận tốc, làm giảm mạch động để cho dòng chảy trở về trạng thái tự nhiên của nó trên một đoạn ngắn nhất, giảm khối lượng gia cố nhưng vẫn bảo vệ được cho công trình đầu mối, cho hai bờ, lòng dẫn hạ lưu và phải đảm bảo sự ổn định trong những điều kiện thuỷ lực tương ứng với các cấp lưu lượng xả qua công trình
Thiết kế nối tiếp thượng hạ lưu đòi hỏi nghiên cứu chế độ thuỷ lực, chọn kết cấu và xác định các thông số tiêu năng dựa trên mô hình thuỷ lực của công trình Nhiệm vụ này phức tạp do ảnh hưởng của dòng chảy từ thượng lưu đến hạ lưu, bao gồm các vấn đề như dòng xiết, hàm khí, mạch động áp suất và mạch động lưu tốc lớn Các chế độ nối tiếp và điều kiện phát sinh, cùng với sự tương tác giữa các dòng chảy và công trình, cũng cần được xem xét Hơn nữa, hình thức và kết cấu của công trình phụ thuộc vào nhiều yếu tố như địa hình, địa chất, độ chênh mực nước, đặc điểm kết cấu và lưu lượng đơn vị qua công trình.
1.2.2 Một số kết quả nghiên cứu ở nước ngoài
Nghiên cứu về nối tiếp và tiêu năng dòng chảy qua công trình đã thu hút sự chú ý của các nhà khoa học trong nước và quốc tế, dẫn đến nhiều giải pháp đa dạng trong các lĩnh vực và khía cạnh khác nhau.
Các vấn đề nối tiếp chảy đáy ở hạ lưu đã được nghiên cứu qua các phương pháp lý thuyết, nổi bật là công trình của Bidone vào năm 1880, Belanger năm 1928 và gần đây là N Ragiaratman với công thức tính chiều sâu liên hiệp của nước nhảy phân giới.
Theo phương pháp thực nghiệm, nhiều tác giả đã tiến hành thí nghiệm dựa trên phương trình năng lượng và động năng để tìm ra các hệ thức tính toán nước nhảy Từ đó, họ đã xác định được dạng nối tiếp giữa dòng xả và dòng chảy hạ lưu.
Tréc tou xốp áp dụng hệ thức nước nhảy của Belanger cùng với phương trình năng lượng để xác định độ sâu co hẹp tại chân đập và độ sâu liên hiệp của nó.
- Giáo sư A-grốt-Skin đã lập các phương trình tính toán nước nhảy theo dạng không thứ nguyên;
- Ngoài ra có thể kể đến các tác giả như: Aivadian, Pavơlôpxki, V.I.Avrinnhayry, V.A.Saomian có nhiều nghiên cứu về vấn đề nước nhảy;
- Nghiên cứu về nhảy ngập trong bài toán phẳng có: T Bunsu, An Rakhơmanốp, N.Rangiatman,v.v…
Trong các trường hợp nước nhảy không gian, nhiều nhà nghiên cứu như Picalôp và Abơranôp đã phát triển sơ đồ nước nhảy hoàn chỉnh với cấu trúc đối xứng Ngoài ra, các nhà khoa học như Linhxepxki và Guncô cũng đóng góp vào lĩnh vực nghiên cứu này.
Serenkôp và B.T.Emxep đã chứng minh sự tồn tại của nước nhảy xiên, đồng thời xác định dạng và phân bố vận tốc của dòng xiên mở rộng Ngoài ra, các nghiên cứu tiếp theo về dòng xiết và dòng êm ở hạ lưu công trình trong điều kiện biên mở cũng được thực hiện bởi Q.F Vaxiliep và M.F.Clatnhep.
Khi nhảy trong không gian với lòng dẫn mở rộng dần, nhiều tác giả như Ra-khơ-ma-nốp và T.D.Prô-vô-rô-va đã nghiên cứu về hiện tượng này trong khu vực nối tiếp.
* Trong trường hợp bậc thấp có đập thụt nối tiếp: có các kết quả nghiên cứu của Forter và Krinde, Moore và Morgan, Ventechow Yames và Sharp
* Các nối tiếp chảy mặt ở hạ lưu công trình có thể kể đến:
Nghiên cứu của A.A Xabanhep dựa trên quan điểm rằng áp suất tại các bậc tuân theo quy luật thủy tĩnh, từ đó phát triển các hệ thức tính toán thủy lực cho các bậc tiếp theo.
- Ngoài ra có thể kể đến các nghiên cứu của M.F Scolanhep, M.A Makhlop về trạng thái nối tiếp chảy mặt
Các vấn đề liên quan đến chảy mặt dạng dòng phun tự do ở hạ lưu công trình chủ yếu tập trung vào việc tính toán chiều sâu hố xói Nghiên cứu của T.E Mirtxkhulava đối với nền đất không dính và T.Kh Akhơ-me-đốp về nền đá rắn đã cung cấp những cơ sở quan trọng Bên cạnh đó, các nghiên cứu của B.M Sicvascvili về sự nối tiếp và sự hợp nhau của hai dòng phun tự do cũng đóng góp đáng kể vào lĩnh vực này.
* Các vấn đề nối tiếp theo dạng xả kết hợp ở hạ lưu công trình có thể kể đến các nghiên cứu của B.M Sicvasvili
* Các nghiên cứu về thuỷ lực và biện pháp công trình trong đoạn chuyển tiếp còn có thể kể đến các tác giả như:
Tiêu năng trong bể và các ảnh hưởng của mực nước hạ lưu, ngưỡng, cũng như bể tiêu năng đầu hố xói đã được nghiên cứu và chỉ ra bởi các tác giả như Tréc tou xốp, Smetana, Bá Kirova, Ughin trut và P Novak.
- Về xói hạ lưu có các tác giả như: Ter-Arakelian, Chalumina, Vuzgo…
- Cu min đã nghiên cứu rất kỹ sự phân bố lưu tốc trong vùng chuyển tiếp thông số đặc trưng α
- Vấn đề mạch động trong và sau nước nhảy đã được chỉ ra trong các nghiên cứu của Lê Vi
Grund đã phát hiện ra các cấu trúc đặc biệt trong nước nhảy có liên quan đến vấn đề xói, thông qua việc khái quát trường lưu tốc bằng ba miền tương hỗ lẫn nhau.
- Liên quan đến chiều sâu xói ổn định đã có các tác giả như: Vuzgo, Schoklitsch, Vernonese, Jaeger, Patresev, Eggenberger, Smolianninov
- Chiều dài xói ổn định có nghiên cứu của Damamzin, Patrasev, Yuricki theo quan điểm chiều dài hố xói liên quan đến độ sâu lớn nhất của hố xói
- Levi, Vuzgo… lại xác định chiều dài xói phụ thuộc vào các yếu tố dòng chảy và công trình như: dòng chảy, đất nền, dạng công trình…
1.2.3 Một số kết quả nghiên cứu ở Việt Nam Ở Viêt Nam, trong mấy thập kỷ gần đây, vấn đề nghiên cứu chế độ thuỷ lực và chọn bể tiêu năng chống xói ở hạ lưu công trình thuỷ lợi nói chung đã thu hút được sự quan tâm đặc biệt của các nhà nghiên cứu, thiết kế và quản lý công trình thuỷ lợi Đã có nhiều công trình nghiên cứu tại Viên khoa học Thuỷ lợi (các tác giả: Trương Đình Dụ, Trần Đình Hợi, Hàn Quốc Trinh, Trần Quốc Thưởng…), Trường Đại học Thuỷ lợi (các tác giả: Hoàng Tư An, Nguyễn Văn Mạo, Phạm Ngọc Quý…) Viện khoa học Thuỷ lợi Nam bộ (các tác giả: Nguyễn Ân Niên, Trần Như Hối, Tăng Đức Thắng) và nhiều nhà chuyên môn khác
Một số tác giả Việt Nam đã tiến hành nghiên cứu theo hướng tương đồng với các tác giả quốc tế, từ đó rút ra những kết luận độc đáo Đồng thời, cũng có những tác giả lựa chọn hướng nghiên cứu riêng, phù hợp với bối cảnh thực tiễn tại Việt Nam Dưới đây là tóm tắt một số kết quả nghiên cứu nổi bật.
- Các nghiên cứu của Nguyễn Văn Đặng dùng lý thuyết lớp biên để thành lập phương trình về nước nhảy ổn định
- Nguyên cứu của Lê Bá Sơn về các vấn đề nối tiếp theo dạng xả kết hợp ở hạ lưu công trình
- Nguyên cứu của Võ Xuân Minh về ảnh hưởng liên quan của mực nước hạ lưu, ngưỡng, bể tiêu năng đầu hố xói
CÁC PHƯƠNG PHÁP TÍNH TOÁN LÝ THUẾT VỀ TIÊU NĂNG ĐÁY
Thiết kế tiêu năng cho phòng xói là một thách thức phức tạp, vẫn chưa có giải pháp hoàn hảo Hiện tại, nghiên cứu về tiêu năng đã phát triển nhiều phương pháp, cho phép áp dụng độc lập hoặc kết hợp linh hoạt với nhau.
Dòng chảy hạ lưu trong khu vực tiêu năng rất phức tạp, hiện chưa có phương pháp phân tích toán học chính xác Hiện tại, người ta vẫn sử dụng các công thức suy diễn từ lý thuyết kết hợp với các hệ số hiệu chỉnh thực nghiệm Ngoài ra, có thể áp dụng công thức bán thực nghiệm, sau đó thực hiện phân tích định tính và cuối cùng sử dụng công thức kinh nghiệm để tính toán.
Đối với các công trình nhỏ, việc bố trí các bộ phận chính gần với sơ đồ lý thuyết cho phép áp dụng các công thức thủy lực để tính toán Trong khi đó, đối với các công trình lớn và vừa, sau khi thực hiện tính toán thủy lực, cần tiến hành nghiệm chứng bằng mô hình thủy công để đảm bảo tính chính xác và hiệu quả.
Trong lĩnh vực tiêu năng phòng xói, việc áp dụng các công thức toán học hay công thức kinh nghiệm thường gặp phải những hạn chế về phạm vi ứng dụng Việc giải quyết và phân tích bằng số học trở nên khó khăn, và khi suy diễn các công thức lý luận, cần thiết phải đưa ra những giả thiết để đơn giản hóa vấn đề Thêm vào đó, trong quá trình giải các phương trình, các số hạng bậc cao thường bị loại bỏ, dẫn đến kết quả tính toán theo lý luận thường chỉ mang tính gần đúng Mặc dù các công thức kinh nghiệm có độ tin cậy nhất định, nhưng phạm vi sử dụng của chúng cũng bị giới hạn và không thể mở rộng.
1.3.2 Phương pháp thực nghiệm mô hình
Mô hình thí nghiệm mô phỏng công trình thực tế trong điều kiện phức tạp, cho kết quả gần gũi với thực tế Phương pháp này giúp giải quyết các vấn đề thiết kế, xây dựng và khai thác công trình thủy lợi mà lý thuyết không thể đáp ứng đầy đủ Qua thực nghiệm mô hình thủy lực, các công thức lý thuyết được kiểm tra, bổ sung và chính xác hóa, đồng thời kiểm chứng kết quả từ mô hình toán Mô hình thí nghiệm là đại diện cho công trình thực tế, và khi mô hình càng sát với thực tế, độ tin cậy càng cao.
Mặc dù các công thức thực nghiệm có ứng dụng nhất định và giá trị gần đúng, nhưng thí nghiệm mô hình không thể phản ánh chính xác các hiện tượng như sóng vỗ hay dòng chảy có hiện tượng trộn khí Việc quyết định kích thước công trình tiêu năng dựa trên thực nghiệm mô hình có thể không hoàn toàn chính xác do sự khác biệt giữa mô hình và dòng chảy thực tế Trạng thái dòng chảy và dòng phát sinh thường không đồng nhất, vì vậy thí nghiệm mô hình không phải là phương pháp tuyệt đối.
1.3.3 Phương pháp nghiên cứu trên nguyên hình
Nguyên hình chính là mô hình tỷ lệ 1:1, đảm bảo các điều kiện tương tự Tuy nhiên, dòng chảy thực tế diễn ra ngoài ý kiến chủ quan của con người, khiến việc nghiên cứu và đo đạc thông số trên nguyên hình không phải lúc nào cũng khả thi Khi công trình đã hoàn thành và xảy ra sự cố mất an toàn, việc sửa đổi kết cấu và hình thức tiêu năng trở nên khó khăn và tốn kém.
Khi nghiên cứu về tiêu năng, việc chỉ sử dụng một trong ba phương pháp là không đủ; do đó, cả ba phương pháp cần được kết hợp để tìm ra giải pháp hiệu quả Độ chính xác của mô hình và tính toán là yếu tố then chốt để đảm bảo tính hợp lý trong thiết kế Tính thực tiễn được kiểm nghiệm thông qua độ an toàn của công trình Dựa trên các số liệu quan sát thực tế, chúng ta có thể xây dựng các công thức thực nghiệm.
MỘT SỐ GIẢI PHÁP TIÊU NĂNG ĐÁY
Ở HẠ LƯU CÔNG TRÌNH THÁO 1.4.1 Xác định lưu lượng tính toán tiêu năng
Công trình tháo nước thường làm việc với nhiều cấp lưu lượng khác nhau
Công trình tiêu năng cần phải đảm bảo khả năng tiêu năng hiệu quả cho mọi cấp lưu lượng trong phạm vi thiết kế, với kích thước phù hợp để tạo ra hiện tượng nước nhảy ngập (hệ số ngập σ=1.05÷1.0) trong mọi trường hợp Để đạt được yêu cầu này, cần phải tính toán lưu lượng gây ra tình huống nối tiếp bất lợi nhất, được gọi là lưu lượng tính toán tiêu năng.
Trong trường hợp bất lợi nhất khi nối tiếp bằng nước nhảy xa, hiệu số chiều cao (h c ” -h h ) đạt giá trị lớn nhất, dẫn đến chiều dài đoạn chảy xiết cũng lớn nhất Do đó, việc thiết kế công trình tiêu năng cần phải được thực hiện với quy mô lớn nhất.
Lưu lượng tính toán tiêu năng không nhất thiết phải bằng lưu lượng lớn nhất Việc xác định lưu lượng này cần phải phân tích các trường hợp cụ thể, tùy thuộc vào mực nước thượng và hạ lưu của công trình.
1.4.2 Xác định hình thức nối tiếp chảy đáy Độ sâu tại mặt cắt co hẹp hc ở sau công trình được xác định trực tiếp bằng phương pháp Bécnuli viết cho mặt cắt 0-0 và mặt cắt C-C (hình 1-3)
Hình 1-3: Giải pháp tiêu năng đáy ở hạ lưu công trình tháo nước
E0: Cột nước toàn phần thượng lưu so với đáy sân sau tại mặt cắt C-C Σξ : Tổng các hệ số tổn thất từ mặt cắt 0-0 đến C-C
= + ξ ϕ α 1 là hệ số lưu tốc (1-3)
Sau khi tính toán hc theo công thức đã nêu, có thể xác định độ sâu liên hợp giữa hc và hc” với độ sâu hạ lưu hh, từ đó xác định các hình thức nối tiếp tương ứng.
Trong trường hợp 1, hạ lưu có thể được phân loại theo các tiêu chí dòng chảy: khi dòng chảy êm, ký hiệu là hc” > hh, sẽ nối tiếp bằng nước nhảy phóng xa; khi hc” = hh, nối tiếp bằng nước nhảy phân giới; và khi hc” < hh, nối tiếp bằng nước nhảy ngập.
Trong trường hợp 2, khi hạ lưu là dòng chảy xiết, có ba tình huống xảy ra: Khi hc” > hh, dòng chảy nối tiếp giảm dần từ hc đến hh (hình 1-3) Khi hc” = hh, dòng chảy đều hình thành ngay sau mặt cắt co hẹp (hình 1-3) Cuối cùng, khi hc” < hh, có đường dâng nối tiếp với dòng chảy đều trong kênh dẫn (hình 1-3).
Trong hình thức nối tiếp bằng nước nhảy phóng xa, sau mặt cắt co hẹp C-C xuất hiện một đoạn dòng chảy xiết, được gọi là đường mặt nước loại C Qua nước nhảy, dòng chảy chuyển thành dòng êm bình thường ở hạ lưu Độ sâu liên hiệp thứ hai sau nước nhảy chính là độ sâu dòng chảy bình thường ở hạ lưu Biết độ sâu hạ lưu hc” = hh, chúng ta có thể tính độ sâu trước nước nhảy và xác định chiều dài đoạn chảy xiết bằng phương pháp tính dòng không đều.
1.4.3 Các biện pháp tiêu năng trong chế độ chảy đáy
Nối tiếp chảy đáy có nước nhảy xa là một hiện tượng nguy hiểm, do đó cần áp dụng biện pháp khử dạng nối tiếp này để chuyển đổi thành nối tiếp bằng nước nhảy ngập Mặc dù dòng chảy sau nước nhảy ngập vẫn duy trì vận tốc lớn ở đáy và kéo dài dòng mạch động, nhưng điều này cho phép hình thành nối tiếp chảy mặt.
Để cải thiện chế độ tiêu năng, biện pháp cơ bản nhất là chuyển đổi từ chế độ nối tiếp bằng nước nhảy xa sang nối tiếp bằng nước nhảy ngập Điều này đòi hỏi phải tăng độ sâu ở hạ lưu.
- Đào sân sau: Tức là làm bể tiêu năng:
- Làm tường chắn để nâng cao mực nước – Tức là làm tường tiêu năng;
- Vừa đào sâu, vừa làm tường – Bể và tường tiêu năng kết hợp
- Ngoài ra có trí thiết bị tiêu năng phụ - Các mố, ngưỡng, răng
Nhiệm vụ tính toán bao gồm việc xác định chiều sâu của bể và chiều cao của tường tiêu năng, cũng như chiều dài bể Lb Bên cạnh đó, cần xác định hình thức và kích thước của thiết bị tiêu năng phụ.
1.4.3.1 Tính bể tiêu năng (hình vẽ 1-3)
Phương pháp chung thường tính chiều sâu bể tiêu năng theo công thức: d =σ hc”- hh-ΔZ (1-4)
Trong bài viết này, chúng ta sẽ tìm hiểu về các thông số kỹ thuật quan trọng liên quan đến độ sâu hạ lưu và các yếu tố ảnh hưởng đến hệ thống bể Độ sâu hạ lưu chưa đào bể được ký hiệu là hh, trong khi độ sâu liên hợp với độ sâu co hẹp được ký hiệu là hc, tính theo cao trình sân bể và cột nước thượng lưu E0’ = E0 + d Hệ số an toàn ngập, ký hiệu là σ, thường được lấy trong khoảng từ 1,05 đến 1,0 Cuối cùng, chênh lệch cột nước ở cửa ra của bể được tính bằng công thức ΔZ = ⎟⎟.
Diện tích mặt cắt ướt ở cuối bể được ký hiệu là ωb, với chiều sâu hb = σhc Trong khi đó, Δ đại diện cho diện tích mặt cắt ướt ở hạ lưu sau bể Hệ số lưu tốc ở cửa ra của bể được ký hiệu là ϕ’ và thường nằm trong khoảng từ 0,95 đến 1,0.
Trong công thức (1-4), để tính giá trị d, các thành phần hc” và ΔZ phụ thuộc vào ẩn số d Do đó, bài toán cần được giải quyết bằng phương pháp tính toán dần dần.
Chiều c của tường tiêu năng tính bằng công thức:
H1: Cột nước tràn trên đỉnh tường, tính theo công thức tràn chảy ngập:
NHẬN XÉT CHUNG
Việc xử lý nối tiếp và tìm giải pháp tiêu năng phòng xói ở hạ lưu là rất quan trọng trong thiết kế công trình tháo Tùy thuộc vào điều kiện địa hình, địa chất và mực nước hạ lưu, cần lựa chọn giải pháp và tính toán kết cấu tiêu năng phù hợp Sự nối tiếp từ thượng lưu xuống hạ lưu cùng hình thức tiêu năng cần được tính toán cẩn thận để tránh hậu quả bất lợi Tại Việt Nam, kết cấu tiêu năng đáy là một trong những hình thức thường được sử dụng nhất Để nâng cao hiệu quả tiêu năng, các thiết bị tiêu năng như mố, ngưỡng thường được xây dựng trên sân sau nhằm tiêu hao năng lượng dòng chảy, giảm chiều dài sân sau và độ sâu đào bể Tuy nhiên, do thiết bị tiêu năng thường đặt ở nơi có lưu tốc lớn, áp lực âm dễ xảy ra, đặc biệt nếu mố hoặc ngưỡng không thuận, gây hại cho bê tông Điều này yêu cầu phải có cách tính toán hợp lý hơn và cần nghiên cứu trên mô hình thủy lực.
Việc xử lý dòng chảy hạ lưu và tìm giải pháp tiêu năng để phòng chống xói mòn cho công trình là rất cần thiết và phức tạp do ảnh hưởng của nhiều hiện tượng thuỷ lực bất lợi Luận văn này trình bày các tính toán ban đầu để xác định bể tiêu năng sau đập tràn, kết hợp với kết quả thí nghiệm nhằm lựa chọn hình thức và kết cấu bể tiêu năng hợp lý, đảm bảo an toàn cho công trình đập tràn Hạ Sê San 2.
TÍNH TOÁN BỂ TIÊU NĂNG TRÀN HẠ SÊ SAN 2
GIỚI THIỆU SƠ LƯỢC VỀ CÔNG TRÌNH HẠ SÊ SAN 2
Công trình thủy điện Hạ Sê San 2 tọa lạc tại Campuchia, cách biên giới Việt Nam khoảng 250km về phía Tây Nó nằm cách điểm nhập lưu sông Srêpôk và Sê San khoảng 1,5 km, và cách điểm hợp lưu giữa sông Sêkông và sông Sê San khoảng 20km về phía thượng lưu Vùng lòng hồ của thủy điện này hoàn toàn nằm trong huyện Sê San, tỉnh Stungstreng, Campuchia Hạ Sê San 2 là công trình cuối cùng trong sơ đồ bậc thang sau hợp lưu sông Sê San và Srêpok.
Đầu tư xây dựng công trình thủy điện Hạ Sê San 2 không chỉ cung cấp nguồn điện cho phát triển kinh tế và đời sống nhân dân tại tỉnh Ratarakin và Stungtreng, mà còn hỗ trợ lưới điện Việt Nam Dự án này sẽ tạo điều kiện thuận lợi cho sự phát triển kinh tế - xã hội của khu vực.
- Tạo nguồn bổ sung nước cho khu vực hạ lưu vào mùa kiệt đáp ứng nhu cầu phục vụ nước sinh hoạt và công nghiệp trong tương lai
- Phát triển du lịch, giao thông thuỷ và đánh bắt nuôi trồng thuỷ hải sản khu vực hồ chứa
Sau khi hoàn thành xây dựng công trình Hạ Sê San 2, khu vực này sẽ trở thành một điểm dân cư với cơ sở hạ tầng đầy đủ Hệ thống giao thông phục vụ thi công sẽ thúc đẩy giao lưu kinh tế và xã hội, góp phần phát triển kinh tế địa phương.
2.1.1.2 Các hạng mục của công trình nghiên cứu
+ Đập dâng để tạo cột nước và hồ chứa
2.1.1.3 Các chỉ tiêu kinh tế - kỹ thuật chính
- Cấp công trình: Công trình cấp I
- Diện tích lưu vực đến tràn Sê San 2: 49.200 Km 2
- Lưu lượng lũ thiết kế (P = 0,1%): 22.734 m 3 /s
- Lưu lượng lũ kiểm tra (P = 0,02%): 28.470 m 3 /s
2.1.2.1 Giới thiệu về đập tràn
Các thông số cơ bản của tràn:
- Đập tràn thực dụng không chân không kiểu Cơ-ri-giơ -Ô -phi-xê-rôv
- Các thông số cơ bản của đập tràn:
TÍNH TOÁN XÁC ĐỊNH BỂ TIÊU NĂNG
- Đập tràn thực dụng không chân không kiểu Cơ-ri-giơ -Ô -phi-xê-rôv
- Quy phạm tính toán thủy lực đập tràn QPTL-C-8-76
2.2.2 Năng lực xả của đập tràn
Lưu lượng xả qua đập tràn thực dụng xác định theo công thức sau:
+ ε: Hệ số co hẹp ngang có kể tới ảnh hưởng của các mố trụ
+ ξ mb : Hệ số giảm lưu lượng do ảnh hưởng mép vào tường bên
+ ξ mt : Hệ số giảm lưu lượng do ảnh hưởng của hình dạng mố trụ trên mặt bằng
+ Σb = n*b với b là bề rộng khoang tràn, n là số khoang tràn
+ H o : Cột nước tràn có kể đến lưu tốc tới gần
Hình 2-1: Sơ đồ tính toán tiêu năng hạ lưu đập tràn
Bảng 2-1: Bảng quan hệ mực nước thượng lưu và lưu lượng xả tổng
2.2.3 Độ sâu dòng chảy tại cửa vào bể Độ sâu dòng chảy tại đầu vào bể tiêu năng được xác định theo công thức:
Trong đó: + φ: là hệ số lưu tốc, lấy φ = 0,9
+ q: là tỷ lưu, q = Q/Bd + Bd: chiều rộng kênh
+ Eo: Năng lượng tại mặt cắt phía trước tràn tính với mặt chuẩn là đáy bể tiêu năng
Bằng phương pháp tính thử dần ta tính được độ sâu hc tương ứng với các cấp lưu lượng
Bảng 2-2: Độ sâu dòng chảy tại cửa vào bể tiêu năng
2.2.4 Tính lưu lượng tiêu năng
Lưu lượng tính toán tiêu năng là lưu lượng tối ưu để đạt hiệu số (hc’’- hh) lớn nhất, giả định không có tổn thất cột nước từ đập tràn đến bể tiêu năng Đối với các công trình thủy điện và thủy lợi, đặc biệt là đập tràn xả lũ Hạ Sê San 2, lưu lượng sẽ biến đổi từ nhỏ đến giá trị lớn nhất Tiêu năng là vấn đề quan trọng sau đập tràn, và thiết bị tiêu năng cần thiết để xử lý hiệu quả cho mọi cấp lưu lượng Việc xác định lưu lượng gây ra sự nối tiếp bất lợi nhất là cần thiết, và lưu lượng này được gọi là lưu lượng tính toán tiêu năng, giúp xác định kích thước bể tiêu năng lớn nhất, mặc dù không đồng nghĩa với việc lưu lượng tính toán tiêu năng là lớn nhất.
Để xác định lưu lượng tiêu năng cho đập tràn Hạ Sê San 2, các giá trị lưu lượng đã được tính toán qua đập tràn sẽ được sử dụng Trong luận văn, học viên sẽ áp dụng giá trị lưu lượng từ Q min = 5.000m3/s đến Q max = 28.470m3/s để thực hiện các phép tính và xác định lưu lượng tiêu năng Kết quả tính toán lưu lượng tiêu năng được trình bày trong bảng dưới đây.
Bảng 2-3: Kết quả tính toán lưu lượng tiêu năng
Từ kết quả tính toán trên với hiệu số (hc''-hh) lớn nhất ứng với lưu lượng tiêu năng là Q = 16.284 m3/s
2.2.5 Tính toán lý thuyết tiêu năng
2.2.5.1 Tính chiều sâu bể tiêu năng:
Tính chiều sâu bể tiêu năng bằng phương pháp thử dần theo công thức: h b = h h + d + ∆Z Trong đó: Độ chênh mực nước trước bể và sau bể là ∆Z
Z q ϕ σ q: Lưu lượng đơn vị được tính tại mặt cắt cuối bể d: Chiều sâu đào bể h h : Mực nước hạ lưu tương ứng φ b : Là hệ số lưu tốc của bể φ b = 0,95 ÷ 1,00
Kết quả tính toán như sau:
Bảng 2-4: Kết quả tính chiều sâu đào bể tiêu năng
2,50 20,90 1,26 18,65 8,84 9,72 0,25 1,94 2,66 Như vậy ứng với lưu lượng tính toán tiêu năng Q = 16.284m 3 /s, chọn chiều sâu đào bể tiêu năng d = 4,30m
2.2.5.2 Tính chiều dài bể tiêu năng Lb:
- Theo công thức kinh nghiệm của M.Đ Tréctôutxốp: Lb = β.ln + l1
Trong đó: + β: Hệ số thực nghiệm, β = 1
+ l n : Chiều dài nước nhảy theo Saphoret: Công thức (3-30
+ l1: là khoảng cách từ chân công trình đến mặt cắt co hẹp c-c, do đập là đập hình cong nên l 1 =0
Kết quả tính toán như sau:
Bảng 2-5: Kết quả tính chiều dài bể tiêu năng
Qua tính toán với Q tiêu năng = 16.284m 3 /s thì chiều dài bể tiêu năng Lb
= 75,58m Chọn bể tiêu năng dài L b m
Bảng 2-6: Thông số bể tiêu năng sau tràn
Tính toán thủy lực tiêu năng sau đập tràn là quá trình quan trọng để xác định các thông số kỹ thuật dựa trên tài liệu đầu vào và phương pháp tính toán Quá trình này giúp xác định hình thức và kết cấu của bể tiêu năng, đồng thời đánh giá mức độ an toàn và điều kiện khả thi Cuối cùng, việc đề xuất phương án bể tiêu năng cho công trình tràn xả lũ Hạ là cần thiết để đảm bảo hiệu quả và an toàn cho hệ thống.
Tính toán thủy lực gồm:
- Tính toán xác định khả năng tháo
Tính toán thủy lực tiêu năng sau đập tràn giúp xác định các thông số thủy lực quan trọng như lưu tốc dòng chảy và cao trình đường mặt nước Kết quả cho thấy kích thước và chiều dài bể tiêu năng Lm là 45.0m, với chiều sâu bể d đạt 4,30m và vận tốc giữa bể khoảng 11.09m/s Do đó, chỉ cần gia cố bê tông dài 45.0m, trong khi đoạn sau của bể không cần gia cố do nền đá Enđêzit, với chiều sâu mực nước trung bình lớn hơn 3m và vận tốc cho phép Vcp đạt 25 m/s.
Bài viết đề cập đến việc tính toán kích thước, kết cấu và các thông số quan trọng của đập tràn, bao gồm hệ số lưu lượng, khả năng tháo nước của tràn, và cao trình mực nước thượng hạ lưu tràn.
Hình 2-2: Sơ đồ tính toán tiêu năng hạ lưu đập tràn sau khi rút ngắn bể tiêu năng
SO SÁNH KẾT QUẢ TÍNH TOÁN LÝ THUYẾT VÀ KẾT QUẢ
LÝ THUYẾT TƯƠNG TỰ VÀ CÁC TIÊU CHUẨN ÁP DỤNG
Dòng chảy qua đập tràn là dạng dòng chảy hở chịu tác động chủ yếu từ trọng lực Theo lý thuyết mô hình thủy lực, tiêu chuẩn tương tự quan trọng được sử dụng là số Froude (Fr).
V - Là lưu tốc dòng chảy (m/s)
L - là kích thước dài (m) g - Là gia tốc trọng trường (g = 9,81 m/s 2 )
C - Là hệ số chezy theo công thức Manning: C n
R egh - Hệ số Rây-nôn giới hạn trong khu tự động mô hình:
R m ε Δ 14 ε - Hệ số sức cản ma sát (ε = 8 2
THIẾT KẾ VÀ XÂY DỰNG MÔ HÌNH
a Mô hình t ổ ng th ể tràn v ậ n hành:
Mô hình tổng thể tràn xả lũ vận hành được chọn theo tỷ lệ λl=1:100 Kiểm tra điều kiện tương tự mô hình thỏa mãn:
Từ tỷ lệ λl suy ra các tỷ lệ cần thiết
(i) Về chiều dài mô hình
Phần thượng lưu tràn được mô hình hóa với chiều dài L TL/H = 30 và độ sâu lớn nhất H ≈ 19.0m Chiều dài lòng hồ phần thượng lưu trong mô hình tương ứng với thực tế là LTL ≈ 600m Để bố trí phần lặng sóng và đoạn chuyển tiếp, chiều dài L TL được xác định là khoảng 900m.
Chiều dài phần hạ lưu sau tràn được xác định từ tim tuyến tràn đến vị trí đo mực nước, đồng thời xem xét ảnh hưởng của kênh xả nhà máy thủy điện Chiều dài vùng đệm trong mô hình thực tế được lấy là L HL ≈ 1100m.
Như vậy tổng chiều dài trên mô hình tương ứng với chiều dài đoạn sông có công trình là ΣL ≈ 2000 m
(ii) Chiều cao cần mô hình hoá:
+ Phần thượng lưu: Mực nước thực tế lớn nhất là MNGC = 78.10m, cao trình đỉnh đập ∇81.0m, cao trình đáy lòng sông điểm thấp nhất khoảng
∇33.0m, nên suy ra chiều cao cần xét là: ∇81.0 - 33.0 H.0m, cộng thêm chiều cao an toàn và độ sâu lớp đệm để lên cọc địa hình nên lấy H TL = 100m
Mực nước lũ kiểm tra ở hạ lưu là MNGC = 63.91m, với cao trình đáy sông khoảng ∇33.0m, do đó độ cao cần thiết là HHL ≈ 31m Kết hợp với độ cao an toàn và lớp đệm lên cọc địa hình, lựa chọn HHL ≈ 80m.
(iii) Chiều rộng cần mô hình hoá:
Xét yếu tố không gian chọn chiều rộng cần mô hình hoá có cao độ lớn hơn mực nước hạ lưu lớn nhất khoảng B ≈ 1400m
Như vậy phạm vi công trình nghiên cứu trong mô hình là:
+ Chiều dài tổng cộng ΣL = 2000m + Chiều rộng (theo chiều dài đỉnh đập) B = 1400m + Chiều cao: HTL = 100m, HHL = 80m
Hình 3-1: Mô hình tổng thể thủy lực tràn xả lũ Hạ Sê San 2 b Mô hình t ổ ng th ể nghiên c ứ u thu ỷ l ự c s ơ đồ d ẫ n dòng x ả l ũ thi công:
Từ tỷ lệ mô hình λL = 100 suy ra các đại lượng khác nêu ở bảng 3.1
Bảng 3-1: Bảng quan hệ tỷ lệ của các mô hình
TT Tên tỷ lệ Biểu thức Với λl = 100
Trong phần công trình, đập tràn và cống dẫn dòng được xây dựng bằng bê tông cốt thép có độ nhám từ 0.016 đến 0.018 Theo tỷ lệ mô hình đã chọn, vật liệu làm mô hình cần có độ nhám là 0.0075.
0 ÷ ≈ (với mô hình tổng thể)
Do đó cho phép chọn kính hữu cơ có toạ độ nhám là: n kính ≈ 0.008 ÷ 0.0090 làm vật liệu để gia công chế tạo mô hình là đảm bảo
Địa hình lòng sông thường được hình thành từ lớp phủ cuội cát sỏi, với độ nhám thực tế nằm trong khoảng n n ≈ 0.023 ÷ 0.025 Do đó, vật liệu sử dụng để chế tạo địa hình lòng sông ở khu vực thượng và hạ lưu công trình cần đạt độ nhám tối thiểu là n m 15 2.
Do vậy trong mô hình cho phép sử dụng vữa xi măng cát trát và xoa nhẵn
3.2.3 Bố trí thiết bị đo Để thu thập các thông số thuỷ lực theo yêu cầu nội dung thí nghiệm trên các mô hình đã bố trí thiết bị như sau:
- Đo lưu lượng: Dùng đập lường thành mỏng, lỗ chữ nhật, xác định theo công thức Rebock:
Trong đó: b- Chiều rộng của đỉnh đập lường (m)
H* - Cột nước tác dụng trên đỉnh đập lường (m)
Đo lưu tốc sử dụng đầu đo điện tử PEMS, E 40 được sản xuất tại Hà Lan, với dải đo từ 0,05 m/s đến 5,0 m/s và sai số chỉ 1% Thiết bị này được kết nối với máy tính để nhận tín hiệu và có chương trình tự động xử lý số liệu.
Mạch động lưu tốc được đo bằng đầu điện tử, với tín hiệu được máy vi tính nhận qua bộ khuyếch đại Hệ thống này có chương trình cài sẵn để tự động xử lý số liệu.
Đo áp suất trung bình được thực hiện bằng ống đo áp, trong đó áp suất thực tế được tính toán từ giá trị cột áp đo được thông qua công thức: P TT = P m λp.
Mạch động áp suất được đo bằng đầu đo áp suất điện tử sản xuất tại Hà Lan và Cộng hòa Liên Bang Đức Dữ liệu thu thập được sẽ được nhập vào máy tính để ghi lại và vẽ biểu đồ mạch động áp suất.
- Đo mực nước và sóng:
Mực nước hồ ở phía thượng lưu và mực nước hạ lưu được đo bằng thiết bị kìm đo cố định do Trung Quốc và Nga sản xuất, với độ chính xác lên đến 0,1mm Để đo đường mặt nước dọc công trình và dao động sóng, sử dụng máy thủy chuẩn Ni04 và mia có khắc số đọc đến 0,5mm nhằm xác định chính xác các thông số này.
Để đảm bảo độ ổn định trong phép đo, thiết bị điện tử sẽ ghi số liệu trong khoảng thời gian từ 30 đến 60 giây cho mỗi điểm đo, với tần suất nhận tín hiệu là 10 lần mỗi giây.
Như vậy chuỗi số liệu của mỗi lần đo là 300 ÷ 600 lần
+ Mạch động lưu tốc (σv) được tính theo biểu thức: σv u n
+ Mạch động áp suất (σp) được tính theo: σp p n
Trong bài viết này, các ký hiệu u' và u đại diện cho lưu tốc tức thời và lưu tốc trung bình theo thời gian (m/s) Các ký hiệu p' và p biểu thị áp suất tức thời và áp suất trung bình theo thời gian (mH2O) Ngoài ra, n là số lần tín hiệu đo đạc được thực hiện.
Các thiết bị đo đạc trên đã được kiểm định sai số không vượt quá 1%
+ Khi chế tạo và xây dựng mô hình thì dung thước thép với vạch khắc 0,5mm do TQ chế tạo và dùng thước kẹp để kiểm tra
Để đo đạc địa hình với kích thước mô hình dài, sử dụng thước thép có độ dài từ 10m đến 20m do Trung Quốc sản xuất, kết hợp với máy Ni04 để xác định cao độ một cách chính xác.
3.2.4 Bố trí mặt cắt đo đạc trên
Để theo dõi mực nước trong công trình, chúng tôi sử dụng kim đo cố định tại các điểm thượng lưu và hạ lưu Mực nước hồ được đo tại vị trí 10Ho, trong khi tại hạ lưu, thiết bị đo được bố trí ở giữa kênh xả Trên mô hình, chúng tôi thực hiện đo đạc các mặt cắt ngang của đường mặt nước và đo vận tốc dòng chảy.
Hình 3.2: Mặt bằng tổng thể bố trí vị trí mặt cắt đo
THÍ NGHIỆM MÔ HÌNH
Phương án thiết kế đã được thử nghiệm với bể tiêu năng dài 80.0m và bề rộng đáy kênh xả nhà máy thủy điện Bđ!3m Sau khi hoàn tất gia công, chế tạo và lắp đặt mô hình, cơ quan tư vấn đã kiểm tra và xác nhận đạt yêu cầu Tiếp theo, cơ quan thí nghiệm đã mở nước thử và tiến hành thí nghiệm chính thức.
Thí nghiệm thiết kế xả độc lập qua tràn xả lũ được thực hiện với 05 cấp lưu lượng, bao gồm 2 cấp lưu lượng lũ kiểm tra và lũ thiết kế tương ứng với Q(0.02%) và Q(0.1%) Các cấp lưu lượng này được thí nghiệm cho chảy tự do qua tràn, trong khi các cấp lưu lượng còn lại được điều chỉnh theo chế độ khống chế độ mở cửa van ở mức a tương ứng với mực nước hồ tại cao trình ∇75.0m.
Bảng 3.2: Các cấp lưu lượng thí nghiệm
3.3.1.2 Thí nghiệm đường mặt nước: Để xác định đường mặt nước, đã bố trí đo dọc công trình Kết quả đo vẽ đường mặt nước ứng với 05 cấp lưu lượng xả lũ ghi trong các bảng 3-3 đến bảng 3-7 (Bảng phụ lục kèm theo)
Kết quả thí nghiệm chỉ ra rằng, trong hai trường hợp chảy tự do và chảy dưới cửa van, mặt nước ở thượng lưu tương đối phẳng lặng, với dòng chủ lưu chảy vào giữa tràn.
Dòng chảy gần cửa vào tràn hạ thấp theo dạng nước đổ, trong khi đầu các trụ pin xuất hiện hiện tượng nước dềnh lên cao Ở giữa tim khoang tràn, mặt nước vồng cao lên, còn đường mặt nước lại lõm xuống sát trụ pin Tại đầu các trụ pin, hiện tượng co hẹp xảy ra, với hai trụ pin bên có co hẹp đứng lớn hơn Dòng chảy trên các khoang tràn nhìn chung diễn ra một cách trơn thuận.
Hình 3-3: Mô hình tổng thể tràn khi chưa có tường biên bên phải
Hình 3-4: Mô hình tổng thể thủy lực tràn khi chưa có tường biên xuất hiện dòng vật phía bên phải tràn
Khi xả lũ qua cửa van, mặt nước hồ tương đối phẳng, nhưng phía trước cửa van có phễu xoáy xuất hiện ở hai bên khe phai trụ pin Lưu lượng xả lũ dao động từ Q=9.340 đến 16.284 m³/s, với phễu xoáy lớn hơn và liên tục ở hai trụ pin bên.
Trong cả hai trường hợp vận hành, dòng chảy đổ xuống bể tiêu năng tạo ra nước nhảy hoàn chỉnh, với sóng trong bể tương đối lớn tương ứng với các cấp lưu lượng xả khác nhau Đối với mọi cấp lưu lượng thí nghiệm, mực nước luôn thấp hơn cao trình ổ trục cửa van.
Mực nước hạ lưu tại các mặt cắt đo không đồng đều, với sóng dao động mạnh Dữ liệu từ bảng 3-3 đến bảng 3-7 đã xác nhận sự biến đổi này, cho thấy mức độ dao động của đường mặt nước là đáng kể.
3.3.1.3 Thí nghiệm xác định lưu tốc trung bình dòng chảy:
Với hai chế độ xả qua tràn là chảy tự do và chảy dưới cửa van ứng với
Trong nghiên cứu, chúng tôi đã thiết lập 05 cấp lưu lượng từ 5.000 đến 28.470 m³/s Mô hình được trang bị hệ thống đo lưu tốc dòng chảy, với sơ đồ bố trí đo tương ứng với đường mặt nước Kết quả đo lưu tốc được tổng hợp và trình bày trong các bảng từ bảng 3-8 đến bảng 3-12.
Qua thí nghiệm cho thấy vận tốc đáy một số vị trí chủ yếu như sau : a Đầu bể tiêu năng :
- Lưu lượng xả Q = 5.000m 3 /s : Khoảng 15,15 ÷ 16,50 a Trong bể tiêu năng :
- Lưu lượng xả Q = 5.000m 3 /s : Khoảng 9,34 ÷ 9,58 c Cuối bể tiêu năng ::
Như vậy lưu tốc đáy tại bể tiêu năng lớn nhất đạt 19,09m/s
3.3.1.4 Xác định mạch động dòng chảy:
Kết quả xác định mạch động vận tốc dòng chảy cho các trưởng hợp xả lũ thệ hiện qua các bảng 3.13 đến bảng 3.17
Kết quả đo mạch động lưu tốc cho thấy mạch động đáy lớn nhất ở một số vị trí:
- Đầu bể tiêu năng khoảng 1,298 m/s
- Trong bể tiêu năng khoảng 0,99 m/s
- Cuối bể tiêu năng khoảng 0,39 m/s
3.3.1.5 Thí nghiệm tiêu năng: Ứng với 05 cấp lưu lượng thí nghiệm cho 2 trường hợp xả lũ qua tràn, sau khi dòng chảy qua tràn đổ xuống bể tiêu năng trong cả 2 trường hợp đều hình thành nước nhảy hoàn chỉnh Với hình thức tiêu năng đáy qua nước nhảy hoàn chỉnh trong bể, để xác định hiệu quả tiêu năng ta thiết lập phương trình năng lượng cho 2 mặt cắt; mặt cắt ở thượng lưu đập tràn 1-1 và mặt cắt 2-2 đầu lòng sông sau bể tiêu năng tại mặt cắt đo XII ta có:
Chọn mặt chuẩn so sánh O-O tại cao trình đáy bể tiêu năng ∇41,5m + Tại mặt cắt 1-1 Z 1 ’ = Z 1 – 41,50
Z1’, Z2’ : là thế năng ở mặt cắt 1-1 và 2-2
1 : là động năng tại mặt cắt 1-1 và 2-2
Kết quả đo đạc tính toán ứng với các chế độ thí nghiệm chủ yếu đạt được hiệu quả như trong bảng 3-18
Bảng 3-18: Xác định hiệu quả tiêu năng
Khi xả lũ với lưu lượng thiết kế và kiểm tra trường hợp xả tự do, năng lượng tiêu hao qua công trình và bể tiêu năng chỉ đạt khoảng 35,15% đến 36,01%, dẫn đến năng lượng dư lớn gây ra sóng mạnh ở lòng sông hạ lưu Ngược lại, khi xả lũ dưới chế độ chảy cửa van, năng lượng tiêu hao tăng lên từ 43,54% đến 62,97% Điều này cho thấy năng lượng dòng chảy qua bể tiêu năng vẫn chưa được tiêu hao hiệu quả Hơn nữa, mô hình tổng thể cho thấy năng lượng dòng chảy dư lớn hơn do ảnh hưởng của dòng vật đổ vào hai bên bể, gây ra nhiễu động mạnh và làm giảm hiệu quả tiêu năng do phá vỡ cơ chế nước nhảy trong bể.
3.3.1.6 Thí nghiệm nghiên cứu nối tiếp
Theo số liệu đo đạc, mực nước tại đuôi đập tràn và đầu bể tiêu năng thấp hơn mực nước hạ lưu, dẫn đến hiện tượng nước nhảy trong bể không phải là nước nhảy ngập Dù ở tất cả các chế độ xả, nước nhảy hoàn chỉnh vẫn được tạo ra trong bể tiêu năng.
Các yếu tố của nước nhảy tương ứng với 05 cấp lưu lượng xả lũ được xác định qua mô hình tổng thể tràn, với độ sâu liên hiệp h c ’ và h c ” cùng chiều dài nước nhảy được ghi trong bảng 3-19 Dữ liệu cho thấy rõ mối quan hệ giữa lưu lượng xả lũ và các yếu tố nước nhảy.
- Chiều dài nước nhảy lớn nhất ứng với Q 284m 3 /s, với Ln = 67,00m
- Chiều dài nước nhảy ngắn nhất ứng với Q =5.000m 3 /s, với Ln = 42,08m
Bảng 3-19: Xác định các thông số tiêu năng
Lưu lượng xả Q Zhồ Zhl hc' hc" Chiều dài nước nhảy Ln
Chiều dài nước nhảy lớn nhất đo được là L n = 67,0m, tương ứng với lưu lượng xả lũ Q = 284m³/s, nhỏ hơn chiều dài bể thiết kế L TK Do đó, nước nhảy hoàn toàn nằm trong bể tiêu năng.
3.3.2 Kết quả thí nghiệm phương án sửa đổi
Phương án sửa đổi mô hình tổng thể được thực hiện sau khi tiến hành thí nghiệm thiết kế, nhằm đánh giá và khắc phục các hiện tượng bất lợi về thủy lực, đồng thời điều chỉnh các hạng mục cần thiết.
+ Chiều dài bể tiêu năng được rút ngắn từ Lm xuống còn Lu.0m, bề rộng đáy kênh thủy điện mở rộng B đ %0.0m
Đánh giá kết quả nghiên cứu
Bài viết tổng hợp kiến thức về tính toán thủy lực cho công trình nối tiếp tiêu năng bằng dòng đáy, tập trung phân tích và đánh giá các yếu tố ảnh hưởng đến dòng chảy ở hạ lưu công trình Đồng thời, bài viết cũng trình bày những phương pháp tính toán hiện đang được sử dụng trong giảng dạy và sản xuất.
Luận văn cũng thu thập được một số công trình có nối tiếp tiêu năng dòng đáy ở trong nước và nước ngoài để rút ra bài học kinh nghiệm
Tính toán lý thuyết kết hợp với thí nghiệm mô hình là phương pháp hiệu quả để đề xuất phương án lựa chọn kết cấu nối tiếp và tiêu năng đáy hợp lý cho tràn xả lũ Hạ Việc này giúp tối ưu hóa hiệu suất và đảm bảo an toàn cho hệ thống thoát nước.
Trong thí nghiệm mô hình Sê San 2, hai phương án thiết kế bể tiêu năng đã được khảo sát, bao gồm bể dài 80.0m và bể sửa đổi dài 75.0m Kết quả cho thấy hiệu quả của việc xả lũ độc lập qua tràn vận hành trong cả hai phương án này.
Dòng chảy qua tràn khi xả cho chảy tự do theo dạng tiêu năng đáy tạo ra nước nhảy hoàn chỉnh, với năng lượng tiêu hao đạt từ 35,15% đến 62,97% tổng năng lượng của dòng chảy Chiều dài nước nhảy lớn nhất là Lnước nhảyf.0m tương ứng với Q.284m3/s Đối với chiều dài bể Lbể = 75.0m, nước nhảy vẫn nằm trọn trong bể tiêu năng theo phương án sửa đổi.
Khả năng tháo nước, áp suất dòng chảy và diễn biến thủy lực ở thượng lưu cùng với thân tràn không thay đổi do thượng lưu và công trình đầu mối giữ nguyên Vận tốc và mực nước trong bể tiêu năng có sự thay đổi nhẹ, với vận tốc dao động từ 0.05 đến 0.30 m/s và mực nước từ 0.02 đến 0.20 m Chiều dài nước nhảy trong phương án sửa đổi ngắn hơn khoảng 1.0 m so với phương án thiết kế ban đầu (PATK Lg.0m; PASĐ Lf.0m).
Giá trị lưu tốc đáy được xác định với cấp lưu lượng tiêu năng Qp=1%.284m3/s, cho thấy vận tốc giữa bể (cuối đoạn bể dài 45,0m) là khoảng 11.09m/s, do đó cần gia cố bê tông cho đoạn đầu bể dài 45,0m Trong khi đó, đoạn sau bể có nền đá Enđêzit với chiều sâu mực nước trung bình lớn hơn 3m cho phép vận tốc Vcp = 25 m/s, theo tài liệu 13, nên không cần gia cố bê tông cho nền này.
Theo phương án thí nghiệm sửa đổi, đoạn sau bể tiêu năng đầu lòng sông hạ lưu sẽ gặp hiện tượng xói cục bộ trong quá trình vận hành tràn xả lũ khi lưu lượng đạt mức Q ≥ Q10%.
Tồn tại và hạn chế
Do thời gian hạn chế, nghiên cứu trong luận văn này không bao gồm các yếu tố ảnh hưởng khác như hiện tượng sóng, hàm khí, mạch động, khí thực và các yếu tố thủy lực khác ở thượng lưu công trình.
Trong khuôn khổ luận văn mới chỉ nghiên cứu đoạn công trình nối tiếp bằng dòng chảy đáy ở một công trình cụ thể
Giải quyết vấn đề nối tiếp và tiêu năng cho công trình xả lũ là một thách thức phức tạp, đòi hỏi nghiên cứu sâu về các hình thức xử lý dòng xiết, kết cấu tiêu năng và biện pháp phòng chống xói lở hạ lưu Yêu cầu về địa chất sẽ khác nhau tùy thuộc vào đặc điểm công trình và điều kiện địa hình, địa chất Do đó, việc phòng chống xói lở trở nên phức tạp hơn và cần lựa chọn giải pháp công trình hợp lý để đảm bảo hiệu quả.
Trong bối cảnh ngành xây dựng thủy lợi tại Việt Nam đang phát triển mạnh mẽ, nhiều công trình thủy lợi và thủy điện lớn đang được triển khai Các công trình này thường có sự chênh lệch mực nước thượng hạ lưu lớn, tỉ lệ lưu lượng cao và dòng chảy mạnh Do đó, việc đảm bảo an toàn cho các công trình và khu vực hạ lưu trở nên cực kỳ quan trọng Vì vậy, cần thiết phải tiến hành nghiên cứu tình hình thủy lực tại hạ lưu cho các loại công trình này.
4 Những vấn đề cần nghiên cứu tiếp
1 Do điều kiện thời gian có hạn nên đề tài mới nghiên cứu được phần xả độc lập qua tràn (xả tự do), cần tiếp tục nghiên cứu xả có cửa van điều tiết qua đập tràn sẽ làm sáng tỏ thêm các vấn đề mà xả độc lập qua tràn chưa thể hiện rõ được
2 Trong điều kiện cho phép có thể tiến hành nghiên cứu sâu hơn về các vấn đề tồn tại trong quá trình nghiên cứu ở trên như: các vấn đề về mạch động, hàm khí, khí thực…từ công thức thực nghiện đã tìm được, kiểm nghiệm lại qua số liệu thí nghiệm của công trình khác có điều kiện tương tự để đánh giá độ tin cậy của các công thưc
3 Nghiên cứu đầy đủ hơn các trường hợp mà công trình phải làm việc tương ứng với các loại đất nền khác nhau qua đó tìm được giải pháp công trình phù hợp nhất
TÀI LIỆU THAM KHẢO Tiếng Việt
1 Nguyễn Chiến (1997), Tính toán thủy lực các kết cấu để diều khiển dòng xiết trong công trình xả nước, Trường Đại học Thủy lợi
2 Nguyễn Chiến (2003), Tính toán khí thực các công trình thủy lợi, NXB Xây dựng, Hà Nội
3 Công ty cổ phần Tư vấn xây dựng điện 1 (PECC1), Báo cáo chính về công trình thuỷ điện Hạ Sê San 2
4 Lưu Công Đào, Nguyễn Tài, Sổ tay tính toán thủy lưc, dịch từ tiếng
Nga, NXB Nông Nghiệp, năm 1984
5 Nguyễn Văn Mạo (2001), Tính toán thủy lực công trình tháo nước
(Bài giảng cao học và NCS), Trường Đại học Thủy lợi, Hà Nội
6 Phạm Ngọc Quý (1996), Thực nghiệm mô hình thủy lực công trình thủy lợi (Bài giảng cao học), Trường Đại học Thủy lợi, Hà Nội
7 Phạm Ngọc Quý (2003), Nối tiếp và tiêu năng hạ lưu công trình tháo
8 Trần Quốc Thưởng (2005), Thí nghiệm mô hình thuỷ lực công trình, Nxb Xây dựng, Hà Nội
9 Trần Quốc Thưởng, Vũ Thanh Te (2007), Đập tràn thực dụng, Nxb Xây dựng, Hà Nội
10 Trường Đại học Thủy lợi (2006), Giáo trình thủy lực tập I, II, NXB Nông nghiệp, Hà Nội
11 Trường Đại học Thủy lợi (2005), Các bảng tính thủy lực, NXB Xây dựng, Hà Nội
12 Trường Đại học Thủy lợi (2004), Thi công các công trình thủy lợi tập 1,2, NXB Xây dựng, Hà Nội
13 Viện Khoa học Thủy Lợi, Báo cáo kết quả thí nghiệm thủy lợi đập tràn xả lũ Hạ Sê San 2, Hà Nội
14 Hydraulic Design of Stilling Basins and Energy Dissipators, Colorado
15 The US Army corps of Engineers (1990), Hydraulic Design of Spillways
16 Ven te Chow, Ph.D, Open-channel Hydraulics, New York, London
PHỤ LỤC TỪ 3-3 ĐẾN PHỤ LỤC 3-23
Hình a: Chế độ thủy lực hạ lưu tràn xả lũ Q(.470m 3 /s
Hình b: Chế độ thủy lực hạ lưu tràn xả lũ Q.284m 3 /
Hình c: Chế độ thủy lực hạ lưu tràn xả lũ Q=9.340m 3 /s
Hình d: Chế độ thủy lực hạ lưu tràn xả lũ Q=5.000m 3 /s §iÓm 1 §iÓm 2 §iÓm 3 §iÓm 4 §iÓm 5 §iÓm 6 §iÓm 7 §iÓm 8 §iÓm 9 §iÓm 10 §iÓm 11 §iÓm 12 §iÓm 13 §iÓm 14 §iÓm 15
1 76.81 76.80 76.79 76.79 76.82 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 76.80 76.79 76.79 76.79 76.79 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
3 76.83 76.80 76.77 76.55 76.30 76.45 76.79 76.80 76.81 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 76.84 76.82 75.60 75.70 75.50 75.65 75.85 75.56 76.80 Cửa vào đầu trụ pin Cách tim đập dâng 7,20m.
6 64.82 65.79 66.00 65.80 65.65 65.75 65.30 Trên mặt cong tràn Cách tim đập dâng 11,35m.
8 65.17 64.81 55.23 56.54 54.77 55.30 64.74 Cuối tràn, đầu bể tiêu năng Cách tim đập dâng 31,85m.
11 64.08 64.13 64.41 64.14 64.26 63.85 64.20 63.94 Cuối bể tiêu năng Cách tim đập dâng 121,85m
12 64.54 64.38 64.11 64.32 64.44 64.50 63.87 64.18 Hạ lưu Cách tim đập dâng 175,00m
13 64.09 63.83 63.95 64.16 64.33 63.79 64.01 64.20 Hạ lưu Cách tim đập dâng 225,00m
14 63.52 63.77 64.24 64.48 64.38 63.70 63.97 64.26 Hạ lưu Cách tim đập dâng 420,00m
15 63.44 63.08 63.42 63.35 63.57 63.40 63.92 63.98 Hạ lưu Cách tim đập dâng 570,00m
Ghi chú: Thủy trực 1 nằm bên phía bờ phải, trong khi Thủy trực 15 ở bên phía bờ trái khi nhìn theo chiều dòng chảy Các điểm từ 1 đến 15 được đánh dấu rõ ràng, giúp xác định vị trí và hướng dòng chảy một cách dễ dàng.
1 74.61 75.59 74.57 74.62 74.60 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 74.56 74.60 74.57 74.57 74.61 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
3 74.58 74.55 74.38 74.24 74.21 74.15 74.16 74.22 74.19 74.16 74.17 74.21 74.26 74.24 74.62 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 75.00 74.82 73.28 73.49 73.41 73.49 73.49 73.49 73.49 73.42 73.48 73.40 73.23 72.80 74.58 Cửa vào đầu trụ pin Cách tim đập dâng 7,20m.
6 63.68 63.57 64.12 63.95 63.98 64.00 63.79 63.85 63.91 63.76 63.12 62.94 Trên mặt cong tràn Cách tim đập dâng 11,35m.
8 62.06 61.74 52.60 55.24 55.16 60.42 62.10 Cuối tràn, đầu bể tiêu năng Cách tim đập dâng 31,85m.
11 62.71 63.11 63.26 63.34 63.27 63.27 63.07 62.66 Cuối bể tiêu năng Cách tim đập dâng 121,85m
12 62.77 62.89 63.56 63.69 63.75 63.68 63.00 63.05 Hạ lưu Cách tim đập dâng 175,00m
13 62.55 62.90 63.24 63.26 62.43 63.70 63.20 62.95 Hạ lưu Cách tim đập dâng 225,00m
14 62.25 62.41 61.85 62.31 62.50 62.91 62.33 62.40 Hạ lưu Cách tim đập dâng 420,00m
15 61.59 61.62 61.60 61.75 61.55 61.80 61.68 61.37 Hạ lưu Cách tim đập dâng 570,00m
Ghi chú về vị trí thủy trực cho biết rằng Thủy trực 1 nằm bên phía bờ phải, trong khi Thủy trực 15 nằm bên phía bờ trái khi nhìn theo chiều dòng chảy Các điểm từ 1 đến 15 được đánh số thứ tự, tạo thành một hệ thống đánh dấu rõ ràng cho việc quan sát và quản lý dòng chảy.
1 75.04 75.05 75.03 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 75.03 75.00 75.01 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
3 75.01 75.00 74.71 74.64 74.70 74.80 74.85 74.92 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 74.89 74.92 74.08 74.22 74.25 74.84 74.78 74.85 Cửa vào đầu trụ pin Cách tim đập dâng 7,20m.
6 59.82 61.02 60.55 60.29 60.31 60.98 60.79 Trên mặt cong tràn Cách tim đập dâng 11,35m.
8 57.36 57.54 48.90 53.52 52.98 58.19 59.62 Cuối tràn, đầu bể tiêu năng Cách tim đập dâng 31,85m.
11 57.80 55.75 58.10 58.78 59.03 59.58 59.68 60.00 Cuối bể tiêu năng Cách tim đập dâng 121,85m
12 59.26 58.98 59.51 60.09 59.41 59.67 59.73 59.94 Hạ lưu Cách tim đập dâng 175,00m
13 57.61 58.45 59.68 59.54 59.39 59.56 59.61 60.01 Hạ lưu Cách tim đập dâng 225,00m
14 59.11 59.25 59.87 59.58 59.91 59.88 59.89 59.67 Hạ lưu Cách tim đập dâng 420,00m
15 59.18 59.15 59.45 59.58 59.64 59.32 59.41 59.60 Hạ lưu Cách tim đập dâng 570,00m
Ghi chú: Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
Ghi chó §iÓm 1 §iÓm 2 §iÓm 3 §iÓm 4 §iÓm 5 §iÓm 6 §iÓm 7 §iÓm 8 §iÓm 9 §iÓm 10 §iÓm 11 §iÓm 12 §iÓm 13 §iÓm 14 §iÓm 15
1 75.01 75.00 75.03 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 75.00 75.02 75.01 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
3 75.00 75.00 75.01 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 75.06 75.00 74.99 75.02 75.00 75.05 75.07 75.09 Cửa vào đầu trụ pin Cách tim đập dâng 7,20m.
6 58.35 58.30 58.31 58.33 58.35 58.36 58.40 Trên mặt cong tràn Cách tim đập dâng 11,35m.
8 55.00 54.81 50.80 51.85 52.16 53.81 56.06 Cuối tràn, đầu bể tiêu năng Cách tim đập dâng 31,85m.
11 55.51 53.85 56.46 56.16 Cuối bể tiêu năng Cách tim đập dâng 121,85m
12 55.92 56.03 56.11 56.25 Hạ lưu Cách tim đập dâng 175,00m
13 56.24 56.41 56.40 56.23 Hạ lưu Cách tim đập dâng 225,00m
14 56.15 56.15 56.29 56.30 Hạ lưu Cách tim đập dâng 420,00m
15 56.06 56.12 56.07 56.01 Hạ lưu Cách tim đập dâng 570,00m
Ghi chú: Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu. ph ầ n th ượ ng l ư u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
6 Trên mặt cong tràn Cách tim đập dâng
Cửa vào đầu trụ pin Cách tim đập dâng 7,20m.
Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
Ghi chú: Thủy trực 1 bên phía bờ ph?i; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
15 Hạ lưu Cách tim đập dâng 570,00m
Hạ lưu Cách tim đập dâng 420,00m
Cuối bể tiêu năng Cách tim đập dâng 121,85m
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
6 Trên mặt cong tràn Cách tim đập dâng
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 Cửa vào đầu trụ pin Cách tim đập dâng 7,20m. ph ầ n th ượ ng l ư u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
Ghi chú: Thủy trực 1 bên phía bờ ph?i; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
14 Hạ lưu Cách tim đập dâng 420,00m
15 Hạ lưu Cách tim đập dâng 570,00m
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
11 Cuối bể tiêu năng Cách tim đập dâng
6 Trên mặt cong tràn Cách tim đập dâng
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 Cửa vào đầu trụ pin Cách tim đập dâng 7,20m. ph ầ n th ượ ng l ư u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
Ghi chú: Thủy trực 1 bên phía bờ ph?i; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
14 Hạ lưu Cách tim đập dâng 420,00m
15 Hạ lưu Cách tim đập dâng 570,00m
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
11 Cuối bể tiêu năng Cách tim đập dâng
6 Trên mặt cong tràn Cách tim đập dâng
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 Cửa vào đầu trụ pin Cách tim đập dâng 7,20m. ph ầ n th ượ ng l ư u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
Ghi chú: Thủy trực 1 bên phía bờ ph?i; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
14 Hạ lưu Cách tim đập dâng 420,00m
15 Hạ lưu Cách tim đập dâng 570,00m
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
11 Cuối bể tiêu năng Cách tim đập dâng
4 Cửa vào đầu trụ pin Cách tim đập dâng 7,20m.
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
Mặt cắt §iÓm ®o phần th − ợng l − u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu. Đỉnh tràn
6 Trên mặt cong tràn Cách tim đập dâng
15 Hạ lưu Cách tim đập dâng 570,00m
Hạ lưu Cách tim đập dâng 420,00m
11 Cuối bể tiêu năng Cách tim đập dâng
12 Hạ lưu Cách tim đập dâng 175,00m
Ghi chú : Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
13 Hạ lưu Cách tim đập dâng 225,00m
Ghi chó phần th − ợng l − u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 Cửa vào đầu trụ pin Cách tim đập dâng 7,20m.
6 Trên mặt cong tràn Cách tim đập dâng
11 Cuối bể tiêu năng Cách tim đập dâng
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
14 Hạ lưu Cách tim đập dâng 420,00m
15 Hạ lưu Cách tim đập dâng 570,00m
Ghi chú : Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
Ghi chó phần th − ợng l − u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 Cửa vào đầu trụ pin Cách tim đập dâng 7,20m.
6 Trên mặt cong tràn Cách tim đập dâng
11 Cuối bể tiêu năng Cách tim đập dâng
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
14 Hạ lưu Cách tim đập dâng 420,00m
15 Hạ lưu Cách tim đập dâng 570,00m
Ghi chú : Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
Ghi chó phần th − ợng l − u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 Cửa vào đầu trụ pin Cách tim đập dâng 7,20m.
6 Trên mặt cong tràn Cách tim đập dâng
11 Cuối bể tiêu năng Cách tim đập dâng
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
14 Hạ lưu Cách tim đập dâng 420,00m
15 Hạ lưu Cách tim đập dâng 570,00m
Ghi chú: Thủy trực 1 nằm ở phía bờ phải, trong khi Thủy trực 15 nằm ở phía bờ trái khi nhìn theo chiều dòng chảy Các điểm từ 1 đến 15 được đánh dấu rõ ràng để thuận tiện cho việc theo dõi và xác định vị trí trong khu vực nghiên cứu.
1 76.81 76.80 76.79 76.79 76.82 Lòng hồ Cách tim đập dâng
2 76.80 76.79 76.79 76.79 76.79 Lòng hồ Cách tim đập dâng
3 76.83 76.80 76.77 76.55 76.30 76.45 76.79 76.80 76.81 Lòng hồ Cách tim đập dâng
4 76.84 76.82 75.60 75.70 75.50 75.65 75.85 75.56 76.80 Cửa vào đầu trụ pin Cách tim ®Ëp d©ng 7,20m.
6 64.82 65.79 66.00 65.80 65.65 65.75 65.30 Trên mặt cong tràn Cách tim ®Ëp d©ng 11,35m.
8 65.17 64.81 55.25 56.56 54.79 55.30 64.74 Cuối tràn, đầu bể tiêu năng Cách tim ®Ëp d©ng 31,85m.
11 64.08 64.13 64.51 64.16 64.26 63.88 64.23 63.97 Cuối bể tiêu năng Cách tim đập d©ng 111,85m
12 64.54 64.38 64.11 64.32 64.44 64.50 63.87 64.18 Hạ lưu Cách tim đập dâng
13 64.09 63.83 63.95 64.16 64.33 63.79 64.01 64.20 Hạ lưu Cách tim đập dâng
14 63.52 63.77 64.24 64.48 64.38 63.70 63.97 64.26 Hạ lưu Cách tim đập dâng
15 63.44 63.08 63.42 63.35 63.57 63.40 63.92 63.98 Hạ lưu Cách tim đập dâng
Ghi chú: Thủy trực 1 nằm ở bờ phải, trong khi Thủy trực 15 nằm ở bờ trái khi nhìn theo chiều dòng chảy Các điểm từ 1 đến 15 được đánh dấu rõ ràng để dễ dàng nhận diện và theo dõi.
1 74.61 75.59 74.57 74.62 74.60 Lòng hồ Cách tim đập dâng
2 74.56 74.60 74.57 74.57 74.61 Lòng hồ Cách tim đập dâng
3 74.58 74.55 74.38 74.24 74.21 74.15 74.16 74.22 74.19 74.16 74.17 74.21 74.26 74.24 74.62 Lòng hồ Cách tim đập dâng
4 75.00 74.82 73.28 73.49 73.41 73.49 73.49 73.49 73.49 73.42 73.48 73.40 73.23 72.80 74.58 Cửa vào đầu trụ pin Cách tim ®Ëp d©ng 7,20m.
6 63.68 63.57 64.12 63.95 63.98 64.00 63.79 63.85 63.91 63.76 63.12 62.94 Trên mặt cong tràn Cách tim ®Ëp d©ng 11,35m.
8 62.06 61.74 52.61 55.29 55.16 60.42 62.10 Cuối tràn, đầu bể tiêu năng Cách tim ®Ëp d©ng 31,85m.
11 62.71 63.11 63.28 63.35 63.29 63.30 63.07 62.69 Cuối bể tiêu năng Cách tim đập d©ng 111,85m
12 62.77 62.89 63.56 63.69 63.75 63.68 63.00 63.05 Hạ lưu Cách tim đập dâng
13 62.55 62.90 63.24 63.26 62.43 63.70 63.20 62.95 Hạ lưu Cách tim đập dâng
14 62.25 62.41 61.85 62.31 62.50 62.91 62.33 62.40 Hạ lưu Cách tim đập dâng
15 61.59 61.62 61.60 61.75 61.55 61.80 61.68 61.37 Hạ lưu Cách tim đập dâng
Ghi chú: Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
Ghi chó §iÓm 1 §iÓm 2 §iÓm 3 §iÓm 4 §iÓm 5 §iÓm 6 §iÓm 7 §iÓm 8 §iÓm 9 §iÓm 10 §iÓm 11 §iÓm 12 §iÓm 13 §iÓm 14 §iÓm 15
1 75.04 75.05 75.03 Lòng hồ Cách tim đập dâng
2 75.03 75.00 75.01 Lòng hồ Cách tim đập dâng
3 75.01 75.00 74.71 74.64 74.70 74.80 74.85 74.92 Lòng hồ Cách tim đập dâng
4 74.89 74.92 74.08 74.22 74.25 74.84 74.78 74.85 Cửa vào đầu trụ pin Cách tim ®Ëp d©ng 7,20m.
6 59.82 61.02 60.55 60.29 60.31 60.98 60.79 Trên mặt cong tràn Cách tim ®Ëp d©ng 11,35m.
8 57.36 57.54 48.93 53.55 53.00 58.19 59.62 Cuối tràn, đầu bể tiêu năng Cách tim ®Ëp d©ng 31,85m.
11 57.80 55.75 58.10 58.80 59.05 59.60 59.70 60.00 Cuối bể tiêu năng Cách tim đập d©ng 111,85m
12 59.26 58.98 59.51 60.09 59.41 59.67 59.73 59.94 Hạ lưu Cách tim đập dâng
13 57.61 58.45 59.68 59.54 59.39 59.56 59.61 60.01 Hạ lưu Cách tim đập dâng
14 59.11 59.25 59.87 59.58 59.91 59.88 59.89 59.67 Hạ lưu Cách tim đập dâng
15 59.18 59.15 59.45 59.58 59.64 59.32 59.41 59.60 Hạ lưu Cách tim đập dâng
Ghi chú: Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
Ghi chó §iÓm 1 §iÓm 2 §iÓm 3 §iÓm 4 §iÓm 5 §iÓm 6 §iÓm 7 §iÓm 8 §iÓm 9 §iÓm 10 §iÓm 11 §iÓm 12 §iÓm 13 §iÓm 14 §iÓm 15
1 75.01 75.00 75.03 Lòng hồ Cách tim đập dâng
2 75.00 75.02 75.01 Lòng hồ Cách tim đập dâng
3 75.00 75.00 75.01 Lòng hồ Cách tim đập dâng
4 75.06 75.00 74.99 75.02 75.00 75.05 75.07 75.09 Cửa vào đầu trụ pin Cách tim ®Ëp d©ng 7,20m.
6 58.35 58.30 58.31 58.33 58.35 58.36 58.40 Trên mặt cong tràn Cách tim ®Ëp d©ng 11,35m.
8 55.00 54.83 50.80 51.87 52.16 53.81 56.06 Cuối tràn, đầu bể tiêu năng Cách tim ®Ëp d©ng 31,85m.
11 55.51 53.87 56.46 56.18 Cuối bể tiêu năng Cách tim đập d©ng 111,85m
12 55.92 56.03 56.11 56.25 Hạ lưu Cách tim đập dâng
13 56.24 56.41 56.40 56.23 Hạ lưu Cách tim đập dâng
14 56.15 56.15 56.29 56.30 Hạ lưu Cách tim đập dâng
15 56.06 56.12 56.07 56.01 Hạ lưu Cách tim đập dâng
Ghi chú: Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu. phần th − ợng l − u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
6 Trên mặt cong tràn Cách tim đập dâng
Cửa vào đầu trụ pin Cách tim đập dâng 7,20m.
Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
Ghi chú : Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
15 Hạ lưu Cách tim đập dâng 570,00m
Hạ lưu Cách tim đập dâng 420,00m
Cuối bể tiêu năng Cách tim đập dâng 111,85m
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
6 Trên mặt cong tràn Cách tim đập dâng
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 Cửa vào đầu trụ pin Cách tim đập dâng
7,20m. phần th − ợng l − u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
Ghi chú : Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
14 Hạ lưu Cách tim đập dâng 420,00m
15 Hạ lưu Cách tim đập dâng 570,00m
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
11 Cuối bể tiêu năng Cách tim đập dâng
6 Trên mặt cong tràn Cách tim đập dâng
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 Cửa vào đầu trụ pin Cách tim đập dâng
7,20m. phần th − ợng l − u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
Ghi chú : Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
14 Hạ lưu Cách tim đập dâng 420,00m
15 Hạ lưu Cách tim đập dâng 570,00m
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
11 Cuối bể tiêu năng Cách tim đập dâng
6 Trên mặt cong tràn Cách tim đập dâng
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 Cửa vào đầu trụ pin Cách tim đập dâng
7,20m. phần th − ợng l − u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
Ghi chú : Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
14 Hạ lưu Cách tim đập dâng 420,00m
15 Hạ lưu Cách tim đập dâng 570,00m
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
11 Cuối bể tiêu năng Cách tim đập dâng
4 Cửa vào đầu trụ pin Cách tim đập dâng
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
Mặt cắt §iÓm ®o phần th − ợng l − u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu. Đỉnh tràn
6 Trên mặt cong tràn Cách tim đập dâng
15 Hạ lưu Cách tim đập dâng 570,00m
Hạ lưu Cách tim đập dâng 420,00m
11 Cuối bể tiêu năng Cách tim đập dâng
12 Hạ lưu Cách tim đập dâng 175,00m
Ghi chú : Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
13 Hạ lưu Cách tim đập dâng 225,00m
Ghi chó phần th − ợng l − u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 Cửa vào đầu trụ pin Cách tim đập dâng
6 Trên mặt cong tràn Cách tim đập dâng
11 Cuối bể tiêu năng Cách tim đập dâng
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
14 Hạ lưu Cách tim đập dâng 420,00m
15 Hạ lưu Cách tim đập dâng 570,00m
Ghi chú : Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
Ghi chó phần th − ợng l − u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 Cửa vào đầu trụ pin Cách tim đập dâng
6 Trên mặt cong tràn Cách tim đập dâng
11 Cuối bể tiêu năng Cách tim đập dâng
12 Hạ lưu Cách tim đập dâng 175,00m
13 Hạ lưu Cách tim đập dâng 225,00m
14 Hạ lưu Cách tim đập dâng 420,00m
15 Hạ lưu Cách tim đập dâng 570,00m
Ghi chú : Thủy trực 1 bên phía bờ phải; Thủy trực 15 bên phía bờ trái nhìn theo chiều dòng chảy
Ghi chó phần th − ợng l − u và công trình V(m/s)
1 Lòng hồ Cách tim đập dâng 300m, về phía thượng lưu.
2 Lòng hồ Cách tim đập dâng 150m, về phía thượng lưu.
3 Lòng hồ Cách tim đập dâng 30m, về phía thượng lưu.
4 Cửa vào đầu trụ pin Cách tim đập dâng
6 Trên mặt cong tràn Cách tim đập dâng