(Luận án tiến sĩ) nghiên cứu cấu trúc vỏ của các đồng vị giàu neutron 49cl và 49ar thông qua phản ứng loại một nucleon 50ar(p,2p) và 50ar(p,pn)

128 3 0
(Luận án tiến sĩ) nghiên cứu cấu trúc vỏ của các đồng vị giàu neutron 49cl và 49ar thông qua phản ứng loại một nucleon 50ar(p,2p) và 50ar(p,pn)

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

MINISTRY OF EDUCATION AND TRAINING MINISTRY OF SCIENCE AND TECHNOLOGY VIET NAM ATOMIC ENERGY INSTITUTE BÙI DUY LINH STUDY ON THE SHELL STRUCTURE OF THE NEUTRON-RICH ISOTOPES 49 Cl AND THROUGH ONE-NUCLEON REMOVAL 50 Ar(p,2p) AND 50 Ar(p,pn) REACTIONS PhD THESIS IN PHYSICS Hanoi - 2022 download by : skknchat@gmail.com 49 Ar MINISTRY OF EDUCATION AND TRAINING MINISTRY OF SCIENCE AND TECHNOLOGY VIET NAM ATOMIC ENERGY INSTITUTE BÙI DUY LINH STUDY ON THE SHELL STRUCTURE OF THE NEUTRON-RICH ISOTOPES 49 Cl AND 49 Ar THROUGH ONE NUCLEON REMOVAL 50 Ar(p,2p) AND 50 Ar(p,pn) REACTIONS Tiếng Việt: Nghiên cứu cấu trúc vỏ đồng vị giàu neutron 49 Cl 49 Ar thông qua phản ứng loại nucleon 50 Ar(p,2p) 50 Ar(p,pn) PhD THESIS IN PHYSICS Luận Văn Tiến Sĩ Vật Lý Major: Atomic and nuclear physics Chuyên ngành: Vật lý nguyên tử hạt nhân Major Code: 9.44.01.06 Mã số: 9.44.01.06 SUPERVISORS: Người hướng dẫn: Assoc Prof Dr Nguyễn Tuấn Khải Dr Alain Gillibert Hanoi - 2021 download by : skknchat@gmail.com LỜI CAM ĐOAN Tôi, Bùi Duy Linh, cam đoan cơng trình nghiên cứu "Nghiên cứu cấu trúc vỏ đồng vị giàu neutron 50 Ar(p,pn)" 49 Cl 49 Ar thông qua phản ứng loại nucleon (tên tiếng anh: "Study on the shell structure of the neutron-rich through one neutron removal 50 Ar(p,2p) and 50 Ar(p,pn) 50 Ar(p,2p) 49 Cl and 49 Ar reactions") cơng trình nghiên cứu riêng Những phần luận án tham khảo từ cơng bố trước trích dẫn ghi nguồn rõ ràng Ngồi phần trích dẫn đó, luận án tồn cơng trình nghiên cứu riêng Các số liệu, kết nêu luận án lấy từ phân tích số liệu thực nghiệm trích dẫn từ số cơng bố có tham gia trực tiếp tơi cộng Các số liệu, kết trung thực chưa công bố khác Tác giả luận án Bùi Duy Linh i download by : skknchat@gmail.com Abstract The atomic nucleus is a dominated by the system by nuclear forces and quantum mechanics This is evidenced by the shell structure of nucleons In 1949, M Goeppert-Mayer and the research group of O Haxel, J Jensen, and H Suess independently published the results of an experiment that observed the energy (energy gap) between two shells Nuclei are filled with a major shell (known as a closed shell) by protons or neutrons are called magic nuclei and have a sphere shape The magic numbers in the nucleus are 2, 8, 20, 28, 50, 82, and 126 A magic nucleus is more stable than others, and this means the excitation energy required to transfer the nucleon to the next shell is significantly larger than their nuclear "neighbors." This special feature is used to search for magic nuclei far from stability However, recent studies of exotic nuclei far from stability discovered that common magic numbers (8, 20, 28, 50, 82, 126) could be altered while new magic numbers (14, 32, 34) could appear The evidence for nuclear shell changes (so-called nuclear shell evolution) has been explored at the magic number N = 32, 34 in 52,54 Ca or close shell N = 32 in 50 Ar The properties of the ground state of 50 Ar (Z = 18, N = 32) and a shell structure of 49 Ar (Z = 18, N = 31) is of great interest because they are expected to provide a necessary information on the migration of the pf neutron shell below Ca In parallel with the change of the neutron shell structure, when adding a few neutrons to a chain isotope, the proton orbitals are also changed In K isotopes with N = 20 to 28, experimental results were confirmed for the inversion of the spin-parity J π = 3/2+ for the ground state and J π = 1/2+ for the first excited state, respectively to holes in orbitals 0d3/2 and 1s1/2 A prediction from the shell model of a similar phenomenon occurs in the Cl isotopes 49 Cl (Z = 17, N = 32) is a study candidate for the evolution of both neutron and proton shells in Cl chain In this thesis, the shell structure of the 49 Cl and 49 Ar isotopes will be studied through universal gamma and momentum distribution combined with the theoretical calculation The first γ-ray spectroscopy of Beam Factory with 50 Ar 49 Cl and 49 Ar was performed at the Radioactive Isotope projectiles at 217 MeV/nucleon in the middle of the target The inter- ested nuclei were produced through one-nucleon removal reactions of 50 Ar(p,2p) and 50 Ar(p,pn) on the liquid hydrogen target of the MINOS device This device was made with a length of 150 mm to increase the total amount of nuclear reactions Proton tracks in a TPC are used to reconstruct the reaction points Prompt de-excitation γ rays were measured with the NaI(Tl) array DALI2+ , while the momentum distributions were obtained with the SAMURAI spectrometer The TOF-Bρ-∆E method allowed unambiguous identification of the incoming and outgoing nuclei in the BigRIPS and SAMURAI spectrometers, respectively ii download by : skknchat@gmail.com After a new re-calibration and correction parameters were applied for raw data to obtain the best particle identification, the procedure analyses of the gamma spectroscopy and the momentum distribution permitted building the level scheme and calculating cross-sections of 49 Ar and 49 Cl Through the one-proton removal reaction 50 Ar(p,2p), a spin-parity J π = 3/2+ is assigned for the ground state of 49 Cl, similar to the recently studied N = 32 isotope 51 K The first excited state at 350 keV is decided on J π = 1/2+ , while the excited state at 1515 keV is deduced J π = 5/2+ For the one-neutron removal reaction 50 Ar(p,pn), a tentative spin-parity could be determined for the low-lying states of 49 Ar A spin-parity J π = 3/2− is suggested for the ground state hence the first excited state at 198 keV has J π = 1/2− The excited state at 1340 keV is confirmed J π = 7/2− In addition, two excited states at 1050 keV and 1466 keV are proposed J π = 5/2− and J π = 3/2− , respectively Besides, the ground state configuration of the 50 Ar isotope is based on one-nucleon removal reactions, which will be discussed Investigation results of the shell structure evolution in 49 Ar and 49 Cl were compared to state-of-the-art theoretical predictions They include shell-model calculations using SDPF-MU effective interaction or ab initio methods; reaction model calculations using the transfer to continuum method (TC) or distorted-wave impulse-approximation (DWIA) The experimental results in the thesis agreed with the theoretical predictions above, which is the basis for developing more accurate theoretical calculation models iii download by : skknchat@gmail.com Tóm tắt Hạt nhân nguyên tử hệ bị chi phối lực hạt nhân học tượng tử, chứng cấu trúc vỏ nucleon Năm 1949, nhà vật lý M Goeppert-Mayer nhóm nghiên cứu O Haxel, J Jensen, H Suess độc lập cơng bố kết thí nghiệm quan sát lượng (khoảng cách lượng) hai lớp vỏ Các hạt nhân điền đầy lớp vỏ (được gọi lớp vỏ đóng) proton neutron gọi hạt nhân magic có hình dạng cầu Số magic hạt nhân bền 2, 8, 20, 28, 50, 82, 126 Các hạt nhân có số magic bền đồng vị bên cạnh, điều có nghĩa lượng kích thích để đưa nucleon lên lớp vỏ chúng lớn đáng kể so với hạt nhân “láng giềng” Đặc điểm dùng để tìm kiếm hạt nhân có số magic nằm xa vùng bền β Tuy nhiên, nghiên cứu gần hạt nhân lạ nằm xa vùng bền khám phá số magic thơng thường (8, 20, 28, 50, 82, 126) bị thay đổi, số đồng vị xuất số magic (14, 32, 34) Bằng chứng cho thay đổi lớp vỏ hạt nhân (sự tiến hóa lớp vỏ hạt nhân) tìm thấy số magic N = 32, 34 trạng thái 50 Ar 52,54 Ca lớp vỏ đóng N = 32 (Z = 18, N = 32) cấu trúc lớp vỏ 49 Ar 50 Ar Đặc trưng (Z = 18, N = 31) quan tâm kỳ vọng mang lại thông tin cần thiết di trú lớp neutron pf bên Ca Song song với thay đổi cấu trúc lớp vỏ neutron, điền thêm neutron vào vài chuỗi đồng vị dẫn đến biến đổi quỹ đạo proton Trong chuỗi đồng vị K với N = 20 đến 28, kết thí nghiệm xác nhận đảo ngược spin J π = 3/2+ trạng thái J π = 1/2+ trạng thái kích thích đầu tiên, tương ứng với lỗ trống quỹ đạo 0d3/2 1s1/2 Một dự đoán từ mẫu vỏ tượng tương tự xảy chuỗi đồng vị Cl 49 Cl (Z = 17, N = 32) đối tượng nghiên cứu cho tiến hóa lớp vỏ neutron proton chuỗi đồng vị Trong luận án này, cấu trúc vỏ đồng vị 49 Cl 49 Ar nghiên cứu thông qua phổ gamma tức thời phân bố xung lượng kết hợp với tính tốn lý thuyết Lần phản ứng loại nucleon 50 Ar(p,2p)49 Cl 50 Ar(p,pn)49 Ar bia hydro lỏng thực tổ hợp sản xuất chùm đồng vị phóng xạ (Radioactive Isotope Beam Factory - RIBF), Viện nghiên cứu Hóa Lý - RIKEN Chùm hạt tới 50 Ar sản phẩm phản ứng phân mảnh chùm sơ cấp 70 Zn bia Be lượng 345 MeV/nucleon 50 Ar nhận diện phổ kế từ BigRIPS phương pháp đo TOF-Bρ-∆E trước tới bia phản ứng thiết bị MINOS Bia hyđrơ lỏng có chiều dài 150 mm để tăng số lượng phản ứng hạt nhân Thiết bị MINOS sử dụng TPC để theo dõi quỹ đạo đường proton phản ứng, thông tin quỹ đạo sử dụng để xây dựng lại vị trí phản ứng bia Các tia gamma tức iv download by : skknchat@gmail.com thời phát đường bay 49 Cl 49 Ar đo hệ đo DALI2+ Với thiết kế 226 tinh thể NaI(Tl) xếp bao quanh MINOS, DALI2+ đo góc ≈ 4π Các hạt sản phẩm 49 Cl 49 Ar nhận diện phổ kế từ SAMURAI dựa phương pháp đo TOF-Bρ-∆E Bên cạnh đó, phổ kế từ SAMURAI cho phép đo đạc thơng số dùng để phân tích phân bố xung lượng hạt sản phẩm Sau thực hiệu chuẩn hiệu chỉnh lại thông số cần thiết cho số liệu thô để thu kết nhận diện hạt tốt nhất, quy trình phân tích phổ gamma, phân bố xung lượng cho phép xây dựng sơ đồ mức kích thích, tính tốn tiết diện ứng loại bỏ proton 50 Ar(p,2p), 49 Cl 49 Ar Thông qua phản spin độ chẵn lẻ J π = 3/2+ gán cho trạng thái bản, tương tự kết nghiên cứu đồng vị 51 K với N = 32 Trạng thái kích thích 350 keV định J π = 1/2+ , khi, trạng thái kích thích 1515 keV suy J π = 5/2+ Đối với phản ứng loại bỏ neutron lẻ dự kiến xác định cho trạng thái thấp 49 Ar 50 Ar(p,pn), spin độ chẵn Spin độ chẵn lẻ J π = 3/2− đề xuất cho trạng thái bản, đó, trạng thái kích thích 198 keV có J π = 1/2− Trạng thái kích thích 1340 keV xác nhận J π = 7/2− Thêm vào đó, hai trạng thái kích thích 1050 keV 1466 keV đề xuất J π = 5/2− J π = 3/2− Bên cạnh đó, cấu hình trạng thái đồng vị 50 Ar dựa phản ứng loại bỏ nucleon thảo luận Các kết nghiên cứu tiến hóa cấu trúc lớp vỏ 49 Cl 49 Ar so sánh với dự đoán lý thuyết đại Các tính tốn bao gồm tính tốn mơ hình mẫu vỏ sử dụng tương tác SDPF-MU phương pháp ab initio; tính tốn mơ hình phản ứng sử dụng phương pháp chuyển continuum (TC: the transfer to continuum method) xấp xỉ xung sóng méo (DWIA: distorted wave impulse-approximation) Các kết thực nghiệm luận án tương đồng với tiên đoán lý thuyết sở để phát triển mẫu tính tốn có độ chớnh xỏc cao hn v download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) Acknowledgements I would like to express my sincere gratitude to all the persons concerned, without whom this work could not be completed First of all, I would like to express my most profound appreciation to my supervisor: Assoc Prof Dr Nguyen Tuan Khai and Dr Alain Gillibert Thank you for providing the guidance, understanding, continuous motivation, helping solve all the problems, and having the patience to see me to complete my Ph.D thesis successfully I would like to convey a special thank to Dr Sidong Chen (HK University), Dr Anna Corsi (CEA Saclay), N T T Phuc (VNU-HCM, Vietnam) for many valuable scientific discussions I would like to thank Dr Pieter Doornenbal (RIKEN) and Prof Dr Alexandre Obertelli (TU Darmstadt) (spokespersons of the SEASTAR project) for providing the opportunity to analyze the excellent experimental data of the exotic isotopes of this thesis I am grateful to N T T Phuc (VNU-HCM, Vietnam), K Ogata (RCNP, Japan), M Gómez-Ramos (Universidad de Sevilla), and A Moro (Universidad de Sevilla), N Shimizu (University of Tokyo), Y Utsuno (Japan Atomic Energy Agency), V Soma (CEA Saclay), and D Holt (TRIUMF) for their theoretical calculations Besides, I would like to thank all SEASTAR project collaborators for their contribution to the successful experiment I am grateful to the referees and committee members for their comments and participation in my thesis defense I appreciate all members of the Nuclear Physics Center (INST) and Nuclear Training Center (VINATOM) for providing help to me in the Ph.D student period I would like to extend my sincere thanks to VINATOM, CEA Saclay, and RIBF RIKEN for supporting exchange trips in France and Japan I want to express my thankfulness towards my family, who pushed me for the Ph.D Thank you for always being right there with me, listening, and for your faith in me (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) vi download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) Table of Contents Abbreviations ix List of Figures xi List of Tables xvi Introduction 1.1 Shell evolution N = 32 1.2 Experimental Technique 1.2.1 Radioactive ion beam 1.2.2 In-beam γ-ray spectroscopy 1.2.3 Momentum distribution 1.3 Theoretical calculations 1.3.1 Nuclear structure calculations 1.3.2 Reaction-model Calculations 1.3.3 The state-of-the-art theoretical calculations 6 10 10 10 11 The third SEASTAR campaign setup 2.1 Acceleration of a 53 K primary beam 2.2 BigRIPS separator 2.2.1 BigRIPS overview 2.2.2 BigRIPS beam-line detectors 2.3 SAMURAI setup 2.3.1 The MINOS device - Secondary 2.3.2 DALI2+ array 2.3.3 SAMURAI spectrometer 2.4 Data acquisition system 2.5 Summary of data 14 14 15 15 16 18 19 22 23 27 28 Data analysis 3.1 Particle identification 3.1.1 Particle identification method 3.1.2 Particle identification in BigRIPS 3.1.3 Particle identification in SAMURAI 3.2 Calibration for the secondary reactions 3.2.1 DALI2+ calibration 3.2.2 MINOS calibration 3.3 Doppler correction 3.4 Gamma spectrum analysis 3.4.1 Geant4 simulation 3.4.2 Bremsstrahlung subtraction 3.4.3 Fitting 3.4.4 Test case of (p,2p) and (p,pn) channels 30 30 30 31 35 48 48 53 56 59 59 60 61 62 target (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) vii download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) TABLE OF CONTENTS 3.5 Cross sections 3.5.1 Inclusive cross-section 3.5.2 Exclusive cross-section Results and Discussion 4.1 50 Ar(p,2p)49 Cl channel 4.1.1 Energy spectrum 4.1.2 Gamma-gamma coincidences 4.1.3 Momentum distribution 4.1.4 Discussion 4.2 50 Ar(p,pn)49 Ar channel 4.2.1 Energy spectrum 4.2.2 Gamma-gamma coincidences 4.2.3 Momentum distribution 4.2.4 Discussion 66 66 66 68 68 68 70 73 74 80 81 82 84 85 Conclusion and future perspectives 95 References 97 (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) viii download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) Conclusion and future perspectives In this work, the first in-beam gamma spectroscopy of 49 Cl and 49 Ar were investigated via one nucleon removal from a 50 Ar beam at 217 MeV per nucleon at the mid of the target During the experiment, the secondary beam of 50 Ar were produced by in-flight fission of 70 Zn-beam at the Radioactive Isotope Beam Factory, RIKEN Nishina Center, Japan A liquid-hydrogen target coupled to a vertex tracker in the MINOS device was surrounded by the DALI2+ scintillator array This array was used to measure γ-ray from the reaction Due to the large acceptance of the SAMURAI spectrometer, the momentum distribution of one-nucleon removal reactions was also analyzed In addition, inclusive cross-sections, as well as cross-sections for the excitation of a particular state, were performed These results have been compared with the benchmark of other neutron-rich nuclei in the same experiment The method and results of the PID of the SEASTAR experimental data are published in the article "Particle identification for Z = 25 – 28 exotic nuclei from SEASTAR experimental data" in Nuclear Science and Technology (ISSN 1810-5408), Vol 7, No 2, pp 08-15 (2017) Analysis of experimental data revealed clear signatures of the restoration of the natural ordering of proton-hole states in proton shell in the 50 Ar 49 Cl In a simple single particle shell model framework, the isotope occupies the sd shell valence with a mix configuration πs1/2 and πd1/2 orbitals According to our analysis results, the ground state of 49 Cl has the unpaired proton populated the πd3/2 orbital Therefore, it is assigned to spin parity of 3/2+ The first excited state is found at 350 keV and transferred from 1/2+ to 3/2+ gs A weak transition at 970 keV includes direct and cascade transitions, which is an unknown spin parity Spin-parity of 5/2+ assigned to the population to the excited state at 1515 keV This standard ordering for 3/2+ versus 1/2+ states is similar to the recently observed 51 K, while spin inversion is still under debate for less neutron-rich chlorine isotopes Combining with other results of my analysis for 47 Cl from multi-nucleon removal reactions, the investigation results are published in the article "Investigation of the ground-state spin inversion in the neutron-rich 47,49 Cl isotopes" in Physics Review C 104, 044331 (2021) For neutron configuration in the 50 Ar isotope, the valence orbitals are νp1/2 and νp3/2 In our experimental data combine theoretical calculation, the 49 Ar ground state has spin parity (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 95 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) Results and Discussion of 3/2 that populated the νp3/2 orbital The first excitation state at 198 keV is assigned to spin parity of 1/2− The strength of 7/2− state at 1340 keV is very higher than the 5/2− state at 1050 keV or 1464 keV The energy at 1466 keV was assigned at the second 3/2− We found − states at low excitation energy, possibly 1/2− and 7/21 , not compatible with a spherical and closed orbitals at N = 32 as observed for spectroscopy of 49 Ar 52 Ca 50 Ar The spectroscopic factors of the low energy are consistent with not only theoretical calculations but also collective effects when two protons are removed from 52 Ca This result has been summarized in a draft, which will be published in the Physics Review C journal in the future To finish, it would also be interesting to study the structure of though the structure of (2021)) However, 48 Ar the one-proton knockout 47 Cl 47 Cl, near N = 28 Al- was investigated in my article (Physics Review C 104, 044331 was poorly transmitted through BigRIPS, resulting in few events for 48 Ar(p,2p)47 Cl reaction Therefore, neither momentum distributions nor spin assignment could be obtained for 47 Cl Other projectiles were better transmitted to the target, resulting in various reaction channels, either multi-nucleon removal reactions like 50 Ar(p,2p2n)47 Cl or the one-neutron knockout reaction 48 Cl(p,pn)47 Cl So, the energy gap be- tween ν0d3/2 and ν1s1/2 proton orbitals evolves with the neutron number involving spin inversion of the ground state and first excited state at low energy, either 1/2+ or 3/2+ is unsolved (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 96 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) References [1] I Tanihata, “Neutron halo nuclei,” J Phys G: Nucl Part Phys., vol 22, pp 157–198, feb 1996 [2] L X Chung, O A Kiselev, D T Khoa, and P Egelhof, “Elastic proton scattering at intermediate energies as a probe of the 6,8 He nuclear matter densities,” Phys Rev C, vol 92, p 034608, Sep 2015 [3] S D Pain, W N Catford, et al., “Structure of 12 Be: Intruder d-Wave Strength at N = 8,” Phys Rev Lett., vol 96, p 032502, Jan 2006 [4] L X Chung, C A Bertulani, et al., “The dominance of the ν(0d5/2 )2 configuration in the N=8 shell in 12 Be from the breakup reaction on a proton target at intermediate energy,” Phys Lett B, vol 774, pp 559–563, 2017 [5] O Sorlin and M.-G Porquet, “Nuclear magic numbers: New features far from stability,” Prog Part Nucl Phys., vol 61, no 2, pp 602–673, 2008 [6] B Bastin, S Grévy, et al., “Collapse of the N = 28 Shell Closure in 42 Si,” Phys Rev Lett., vol 99, p 022503, Jul 2007 [7] E Becheva, Y Blumenfeld, et al., “N = 14 Shell Closure in 22 O Viewed through a Neutron Sensitive Probe,” Phys Rev Lett., vol 96, p 012501, Jan 2006 [8] F Wienholtz, D Beck, et al., “Erratum: Masses of exotic calcium isotopes pin down nuclear forces,” Nature, vol 500, pp 612–612, Aug 2013 [9] D Steppenbeck, S Takeuchi, et al., “Evidence for a new nuclear ’magic number’ from the level structure of 54 Ca,” Nature, vol 502, pp 207–210, Oct 2013 [10] D Steppenbeck, S Takeuchi, et al., “Low-Lying Structure of 50 Ar and the N = 32 Subshell Closure,” Phys Rev Lett., vol 114, p 252501, Jun 2015 [11] M Rosenbusch, P Ascher, et al., “Probing the N = 32 Shell Closure below the Magic Proton Number Z = 20: Mass Measurements of the Exotic Isotopes 52,53 K,” Phys Rev Lett., vol 114, p 202501, May 2015 (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 97 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) REFERENCES [12] M L Cortộs, W Rodriguez, et al., “N = 32 shell closure below calcium: Low-lying structure of 50 Ar,” Phys Rev C, vol 102, p 064320, Dec 2020 [13] P Doll, G Wagner, K Knă opfle, and G Mairle, The quasihole aspect of hole strength distributions in odd potassium and calcium isotopes,” Nucl Phys A, vol 263, no 2, pp 210–236, 1976 [14] J Papuga, M L Bissell, et al., “Spins and Magnetic Moments of lishing the 1/2+ 3/2+ and 49 K and 51 K: Estab- Level Ordering Beyond N =28,” Phys Rev Lett., vol 110, p 172503, Apr 2013 [15] Y Sun, A Obertelli, et al., “Restoration of the natural E(1/21+) - E(3/21+) energy splitting in odd-K isotopes towards N = 40,” Phys Lett B, vol 802, p 135215, 2020 [16] L A Riley, P Adrich, et al., “γ-ray spectroscopy of one-proton knockout from 45 Cl,” Phys Rev C, vol 86, p 047301, Oct 2012 [17] P Doornenbal and A Obertelli, “RIKEN proposal for scientific program: Shell evolution and search for two-plus stats at the RIBF (SEASTAR),” 2013 - Unpublished [18] Z Meisel, S George, et al., “Mass measurements demonstrate a strong n = 28 shell gap in argon,” Phys Rev Lett., vol 114, p 022501, Jan 2015 [19] M Mougeot, D Atanasov, et al., “Examining the N = 28 shell closure through highprecision mass measurements of 46–48 Ar,” Phys Rev C, vol 102, p 014301, Jul 2020 [20] H Scheit, T Glasmacher, et al., “New region of deformation: The neutron-rich sulfur isotopes,” Phys Rev Lett., vol 77, pp 3967–3970, Nov 1996 [21] H N Liu, A Obertelli, et al., “How Robust is the N = 34 Subshell Closure? First Spectroscopy of 52 Ar,” Phys Rev Lett., vol 122, p 072502, Feb 2019 [22] A Gade, D Bazin, et al., “Detailed experimental study on intermediate-energy coulomb excitation of 46 Ar,” Phys Rev C, vol 68, p 014302, Jul 2003 [23] R Winkler, A Gade, et al., “Quadrupole collectivity beyond n = 28: Intermediate-energy coulomb excitation of 47,48 Ar,” Phys Rev Lett., vol 108, p 182501, Apr 2012 [24] Gaudefroy, L., Sorlin, O., et al., “Study of the n = 28 shell closure in the ar isotopic chain a spiral experiment for nuclear astrophysics,” Eur Phys J A, vol 27, pp 309–314, 2006 [25] O Haxel, J H D Jensen, and H E Suess, “On the "Magic Numbers" in Nuclear Structure,” Phys Rev., vol 75, pp 17661766, Jun 1949 (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 98 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) REFERENCES [26] M G Mayer, On Closed Shells in Nuclei II,” Phys Rev., vol 75, pp 1969–1970, Jun 1949 [27] A Huck, G Klotz, et al., “Beta decay of the new isotopes 52 K, 52 Ca, and 52 Sc; a test of the shell model far from stability,” Phys Rev C, vol 31, pp 2226–2237, Jun 1985 + [28] A Gade, B A Brown, et al., “Evolution of the E(1/2+ ) − E(3/21 ) energy spacing in odd-mass K, Cl, and P isotopes for N = 20−28,” Phys Rev C, vol 74, p 034322, Sep 2006 [29] B Bastin, S Grévy, et al., “Collapse of the N = 28 Shell Closure in 42 Si,” Phys Rev Lett., vol 99, p 022503, Jul 2007 [30] H L Crawford, P Fallon, et al., “First spectroscopy of the near drip-line nucleus 40 Mg,” Phys Rev Lett., vol 122, p 052501, Feb 2019 [31] X Liang, R Chapman, et al., “Observation of yrast states in neutron-rich 41 Cl,” Phys Rev C, vol 66, p 037301, Sep 2002 [32] J Ollier, R Chapman, et al., “Yrast states in neutron-rich 41 Cl,” Phys Rev C, vol 67, p 024302, Feb 2003 [33] S Szilner, L Corradi, et al., “Structure of chlorine isotopes populated by heavy ion transfer reactions,” Phys Rev C, vol 87, p 054322, May 2013 [34] J A Winger, H H Yousif, et al., “Low-energy structure of neutron-rich S, Cl and Ar nuclides through β decay,” AIP Conf Proc., vol 455, no 1, pp 606–609, 1998 [35] R W Ibbotson, T Glasmacher, P F Mantica, and H Scheit, “Coulomb excitation of odd-A neutron-rich π(s − d) and ν(f − p) shell nuclei,” Phys Rev C, vol 59, pp 642–647, Feb 1999 [36] O Sorlin, Z Dombrádi, et al., “Structure of the neutron-rich 37,39 P and 43,45 Cl nuclei,” Eur Phys J A, vol 22, pp 173–178, Nov 2004 [37] J Papuga, M L Bissell, et al., “Shell structure of potassium isotopes deduced from their magnetic moments,” Phys Rev C, vol 90, p 034321, Sep 2014 [38] T Otsuka, T Suzuki, et al., “Evolution of Nuclear Shells due to the Tensor Force,” Phys Rev Lett., vol 95, p 232502, Nov 2005 [39] P Doll, H Mackh, G Mairle, and G Wagner, “Comparative spectroscopy with the (d, τ ) reaction on even Ar isotopes,” Nucl Phys A, vol 230, no 2, pp 329–342, 1974 (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 99 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) REFERENCES [40] G Mairle, M Seeger, et al., “The distribution of proton-hole strengths in the (2s,1d)-shell of 35 Cl, 37 Cl and 39 Cl,” Nucl Phys A, vol 565, no 3, pp 543–562, 1993 [41] J A Winger, P F Mantica, and R M Ronningen, “β decay of 40,42 S and 43 Cl,” Phys Rev C, vol 73, p 044318, Apr 2006 [42] S R Stroberg, A Gade, et al., “In-beam γ-ray spectroscopy of 43−46 Cl,” Phys Rev C, vol 86, p 024321, Aug 2012 [43] M De Rydt, J M Daugas, et al., “g factor of the 44 Cl ground state: Probing the reduced Z = 16 and N = 28 gaps,” Phys Rev C, vol 81, p 034308, Mar 2010 [44] Obertelli, A., “Direct reactions with exotic nuclei,” EPJ Web Conf., vol 66, p 01014, 2014 [45] Y Blumenfeld, T Nilsson, and P V Duppen, “Facilities and methods for radioactive ion beam production,” Physica Scripta, vol T152, p 014023, jan 2013 [46] D J Morrissey and B Sherrill, “In-Flight Separation of Projectile Fragments,” Lect Notes Phys., vol 651, pp 113–135, 2004 [47] P Van Duppen, “Isotope Separation On Line and Post Acceleration,” Lect Notes Phys., vol 700, pp 37–77, 2006 [48] H Sakurai, “Physics opportunities with the RI Beam Factory at RIKEN,” Eur Phys J.: Spec Top., vol 150, pp 249–254, Nov 2007 [49] A Gade and B M Sherrill, “NSCL and FRIB at michigan state university: Nuclear science at the limits of stability,” Physica Scripta, vol 91, p 053003, apr 2016 [50] H Geissel, P Armbruster, et al., “The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions,” Nucl Instr Meth In Phys Res B, vol 70, no 1, pp 286–297, 1992 [51] T Kubo, “In-flight RI beam separator BigRIPS at RIKEN and elsewhere in Japan,” Nucl Instr Meth In Phys Res B, vol 204, pp 97–113, 2003 14th International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications [52] T Ohnishi, T Kubo, et al., “Identification of New Isotopes by In-Flight Fission of 345 MeV/nucleon 238 U: 125 Pd and 126 Pd Produced First Results from the RIKEN RI Beam Factory,” J Phys Soc Jpn., vol 77, no 8, p 083201, 2008 [53] T Kubo, D Kameda, et al., “BigRIPS separator and ZeroDegree spectrometer at RIKEN RI Beam Factory,” Prog Theor Exp Phys., vol 2012, 12 2012 03C003 (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 100 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) REFERENCES [54] T Kubo, K Kusaka, et al., “Status and Overview of Superconducting Radioactive Isotope Beam Separator BigRIPS at RIKEN,” IEEE Trans Appl Supercond., vol 17, no 2, pp 1069–1077, 2007 [55] N Paul, First spectroscopy of 110 Zr with MINOS PhD thesis, Université Paris-Saclay, 2018 [56] Obertelli, Alexandre, “Nuclear structure from direct reactions with rare isotopes: observables, methods and highlights,” Eur Phys J Plus, vol 131, no 9, p 319, 2016 [57] P Hansen and J Tostevin, “Direct reaction with exotic nuclei,” Annu Rev Nucl Part Sci., vol 53, no 1, pp 219–261, 2003 [58] A Gade, P Adrich, et al., “Reduction of spectroscopic strength: Weakly-bound and strongly-bound single-particle states studied using one-nucleon knockout reactions,” Phys Rev C, vol 77, p 044306, Apr 2008 [59] K Heyde, The Nuclear Shell Model Springer-Verlag Berlin Heidelberg, ed., 1994 [60] C A Bertulani and P G Hansen, “Momentum distributions in stripping reactions of radioactive projectiles at intermediate energies,” Phys Rev C, vol 70, p 034609, Sep 2004 [61] A M Moro, “Three-body model for the analysis of quasifree scattering reactions in inverse kinematics,” Phys Rev C, vol 92, p 044605, Oct 2015 [62] N Shimizu, T Mizusaki, Y Utsuno, and Y Tsunoda, “Thick-restart block Lanczos method for large-scale shell-model calculations,” Comput Phys Commun., vol 244, pp 372–384, 2019 [63] N Shimizu, “Nuclear shell-model code for massive parallel computation, KSHELL,” arXiv:1310.5431 [nucl-th], 2013 [64] Y Utsuno, T Otsuka, et al., “Shape transitions in exotic Si and S isotopes and tensorforce-driven Jahn-Teller effect,” Phys Rev C, vol 86, p 051301, Nov 2012 [65] V Somà, T Duguet, and C Barbieri, “Ab initio self-consistent Gorkov-Green’s function calculations of semimagic nuclei: Formalism at second order with a two-nucleon interaction,” Phys Rev C, vol 84, p 064317, Dec 2011 [66] V Somà, “Self-consistent green’s function theory for atomic nuclei,” Front Phys., vol 8, p 340, 2020 (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 101 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) REFERENCES [67] S R Stroberg, H Hergert, S K Bogner, and J D Holt, “Nonempirical Interactions for the Nuclear Shell Model: An Update,” Annu Rev Nucl Part Sci., vol 69, no 1, pp 307–362, 2019 [68] E Epelbaum, H.-W Hammer, and U.-G Meißner, “Modern theory of nuclear forces,” Rev Mod Phys., vol 81, pp 1773–1825, Dec 2009 [69] R Machleidt and D Entem, “Chiral effective field theory and nuclear forces,” Phys Rep., vol 503, no 1, pp – 75, 2011 [70] V Somà, C Barbieri, and T Duguet, “Ab initio self-consistent Gorkov-Green’s function calculations of semi-magic nuclei: Numerical implementation at second order with a twonucleon interaction,” Phys Rev C, vol 89, p 024323, Feb 2014 [71] S K Bogner, H Hergert, et al., “Nonperturbative Shell-Model Interactions from the InMedium Similarity Renormalization Group,” Phys Rev Lett., vol 113, p 142501, Oct 2014 [72] J Simonis, K Hebeler, et al., “Exploring sd-shell nuclei from two- and three-nucleon interactions with realistic saturation properties,” Phys Rev C, vol 93, p 011302, Jan 2016 [73] R Crespo, A Deltuva, et al., “Multiple scattering effects in quasifree scattering from halo nuclei: A test of the distorted-wave impulse approximation,” Phys Rev C, vol 77, p 024601, Feb 2008 [74] T Aumann, C A Bertulani, and J Ryckebusch, “Quasifree (p,2p) and (p,pn) reactions with unstable nuclei,” Phys Rev C, vol 88, p 064610, Dec 2013 [75] K Ogata, K Yoshida, and K Minomo, “Asymmetry of the parallel momentum distribution of (p, pN ) reaction residues,” Phys Rev C, vol 92, p 034616, Sep 2015 [76] T Wakasa, K Ogata, and T Noro, “Proton-induced knockout reactions with polarized and unpolarized beams,” Prog Part Nucl Phys., vol 96, pp 32–87, 2017 [77] T Aumann, C Barbieri, et al., “Quenching of single-particle strength from direct reactions with stable and rare-isotope beams,” Prog Part Nucl Phys., p 103847, 2021 [78] B A Brown and B H Wildenthal, “Status of the Nuclear Shell Model,” Annu Rev Nucl Part Sci., vol 38, no 1, pp 2966, 1988 (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 102 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) REFERENCES [79] M Honma, T Otsuka, and T Mizusaki, “Shell-model description of neutron-rich Ca isotopes,” RIKEN Acc Prog Rep., vol 41, p 32, 2008 [80] T Otsuka, T Suzuki, et al., “Novel Features of Nuclear Forces and Shell Evolution in Exotic Nuclei,” Phys Rev Lett., vol 104, p 012501, Jan 2010 [81] S R Stroberg, A Calci, et al., “Nucleus-Dependent Valence-Space Approach to Nuclear Structure,” Phys Rev Lett., vol 118, p 032502, Jan 2017 [82] K Hebeler, S K Bogner, et al., “Improved nuclear matter calculations from chiral lowmomentum interactions,” Phys Rev C, vol 83, p 031301, Mar 2011 [83] D R Entem and R Machleidt, “Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory,” Phys Rev C, vol 68, p 041001, Oct 2003 [84] J Simonis, S R Stroberg, et al., “Saturation with chiral interactions and consequences for finite nuclei,” Phys Rev C, vol 96, p 014303, Jul 2017 [85] T D Morris, J Simonis, et al., “Structure of the lightest tin isotopes,” Phys Rev Lett., vol 120, p 152503, Apr 2018 [86] S R Stroberg, J D Holt, A Schwenk, and J Simonis, “Ab initio limits of atomic nuclei,” Phys Rev Lett., vol 126, p 022501, Jan 2021 [87] E Leistenschneider, M P Reiter, et al., “Dawning of the N = 32 Shell Closure Seen through Precision Mass Measurements of Neutron-Rich Titanium Isotopes,” Phys Rev Lett., vol 120, p 062503, Feb 2018 [88] S Chen, J Lee, et al., “Quasifree Neutron Knockout from 54 Ca Corroborates Arising N = 34 Neutron Magic Number,” Phys Rev Lett., vol 123, p 142501, Sep 2019 [89] V Somà, P Navrátil, et al., “Novel chiral Hamiltonian and observables in light and medium-mass nuclei,” Phys Rev C, vol 101, p 014318, Jan 2020 [90] V Somà, C Barbieri, T Duguet, and P Navrátil, “Moving away from singly-magic nuclei with Gorkov Green’s function theory,” Eur Phys J A, vol 57, no 4, p 135, 2021 [91] A Ekstrăom, G R Jansen, et al., “Accurate nuclear radii and binding energies from a chiral interaction,” Phys Rev C, vol 91, p 051301, May 2015 [92] F Raimondi and C Barbieri, “Nuclear electromagnetic dipole response with the selfconsistent Green’s function formalism,” Phys Rev C, vol 99, p 054327, May 2019 (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 103 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) REFERENCES [93] C Barbieri, N Rocco, and V Somà, “Lepton scattering from 40 Ar and 48 Ti in the quasielastic peak region,” Phys Rev C, vol 100, p 062501, Dec 2019 [94] H Okuno, N Fukunishi, and O Kamigaito, “Progress of RIBF accelerators,” Prog Theor Exp Phys., vol 2012, 12 2012 03C002 [95] H Okuno, J Ohnishi, et al., “Magnets for the RIKEN Superconducting Ring Cyclotron,” in 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18 - 22 Oct 2004, p 373, 2005 [96] T Nakagawa, M Kidera, et al., “New superconducting electron cyclotron resonance ion source for RIKEN RI beam factory project,” Rev Sci Instrum., vol 79, no 2, p 02A327, 2008 [97] Y Higurashi, J Ohnishi, et al., “Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz,” Rev Sci Instrum., vol 83, no 2, p 02A308, 2012 [98] N Sakamoto et al., “Performance of New Injector RILAC2 for Riken Ri-Beam Factory,” in Proceedings, 27th Linear Accelerator Conference, LINAC2014: Geneva, Switzerland, August 31-September 5, 2014, p THPP116, 2014 [99] N Fukuda, T Kubo, et al., “Identification and separation of radioactive isotope beams by the BigRIPS separator at the RIKEN RI Beam Factory,” Nucl Instr Meth In Phys Res B, vol 317, pp 323 – 332, 2013 [100] H Kumagai, T Ohnishi, et al., “Development of Parallel Plate Avalanche Counter (PPAC) for BigRIPS fragment separator,” Nucl Instr Meth In Phys Res B, vol 317, pp 717 – 727, 2013 [101] H Kumagai, A Ozawa, et al., “Delay-line PPAC for high-energy light ions,” Nucl Instr Meth In Phys Res A, vol 470, no 3, pp 562 – 570, 2001 [102] “Technical Information of BigRIPS, ZeroDegree, SAMURAI Beam Line, and OEDO Beamline.” http://ribf.riken.jp/BigRIPSInfo/ Accessed: 2019-05-10 [103] G F Knoll, Radiation detection and measurement John Wiley & Sons, Inc., fourth ed., 2010 [104] W Christie, J Romero, et al., “A multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions,” Nucl Instr Meth In Phys Res A, vol 255, no 3, pp 466 476, 1987 (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 104 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) REFERENCES [105] C M Shand, Shell Evolution Beyond N = 50 and Z = 28: Spectroscopy of 81,82,83,84 Zn PhD thesis, University of Surrey, 2016 [106] M L Cortes, Inelastic scattering of Ni and Zn isotopes off a proton target PhD thesis, Technische Universită at Darmstadt, 2016 [107] Y Shimizu, T Kobayashi, et al., “SAMURAI project at RIBF,” J Phys.: Conf Ser., vol 312, p 052022, 09 2011 [108] T Kobayashi, N Chiga, et al., “SAMURAI spectrometer for RI beam experiments,” Nucl Instr Meth In Phys Res B, vol 317, pp 294 – 304, 2013 [109] A Obertelli, A Delbart, et al., “MINOS: A vertex tracker coupled to a thick liquidhydrogen target for in-beam spectroscopy of exotic nuclei,” Eur Phys J A, vol 50, 01 2014 [110] C Santamaria, Quest for new nuclear magic numbers with MINOS PhD thesis, Université Paris-Sud XI, 2015 [111] P Doornenbal, “In-beam gamma-ray spectroscopy at the RIBF,” Prog Theor Exp Phys., vol 2012, 12 2012 03C004 [112] S Takeuchi, T Motobayashi, et al., “DALI2: A NaI(Tl) detector array for measurements of γ rays from fast nuclei,” Nucl Instr Meth In Phys Res A, vol 763, pp 596 – 603, 2014 [113] I Murray, F Browne, et al., “DALI2+ at the RIKEN Nishina Center RIBF,” RIKEN Acc Prog Rep., vol 51, p 158, 2018 [114] A Obertelli and T Uesaka, “Hydrogen targets for exotic-nuclei studies developed over the past 10 years,” Eur Phys J A, vol 47, no 9, p 105, 2011 [115] I Giomataris, R D Oliveira, et al., “Micromegas in a bulk,” Nucl Instr Meth In Phys Res A, vol 560, no 2, pp 405 – 408, 2006 [116] C Santamaria, A Obertelli, et al., “Tracking with the MINOS Time Projection Chamber,” Nucl Instr Meth In Phys Res A, vol 905, pp 138 – 148, 2018 [117] P Hough, “Method and means for recognizing complex patterns.” US Patent 3, 069, 654, December 18 1962 [118] T Nishio, T Motobayasi, et al., “NaI(Tl) Detector Assembly for Low Intensity Radiation (DALI),” RIKEN Acc Prog Rep., vol 29, p 184, 1995 (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 105 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) REFERENCES [119] SAMURAI038 & SAMURAI039. Preparation of SEASTAR experiment meeting on April 26th 2017 RIKEN, Janpan - Private Communication [120] S Agostinelli, J Allison, et al., “Geant4—a simulation toolkit,” Nucl Instr Meth In Phys Res A, vol 506, no 3, pp 250 – 303, 2003 [121] Y Shimizu, H Otsu, et al., “Vacuum system for the SAMURAI spectrometer,” Nucl Instr Meth In Phys Res B, vol 317, pp 739 – 742, 2013 [122] H Sato, T Kubo, et al., “Superconducting Dipole Magnet for SAMURAI Spectrometer,” IEEE Trans Appl Supercond., vol 23, pp 4500308–4500308, June 2013 [123] “SAMURAI: ChargedParticleDetector.” http://ribf.riken.jp/SAMURAI/index.php? ChargedParticleDetector Accessed: 2019-10-24 [124] Y Kondo, T Nakamura, et al., “Calibration methods of the neutron detector array NEBULA,” RIKEN Acc Prog Rep., vol 45, p 131, 2012 [125] T Nakamura and Y Kondo, “Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments,” Nucl Instr Meth In Phys Res B, vol 376, pp 156 – 161, 2016 [126] “SAMURAI.” http://be.nucl.ap.titech.ac.jp/~nebula Accessed: 2019-10-24 [127] T Aumann and The R3B Collaboration, “Technical Report for the Design, Construction and Commissioning of NeuLAND: The High-Resolution Neutron Time-of-Flight Spectrometer for R3B,” tech rep., GSI Helmholtz Centre, 2011 [128] J Kahlbow, T Aumann, et al., “NeuLAND demonstrator at SAMURAI: commissioning and efficiency studies,” RIKEN Acc Prog Rep., vol 49, p 17, 2016 [129] Z Yang, F Marqués, et al., Study of Multi-neutron Systems with SAMURAI Spectrometer, pp 529–534 Germany: Springer, 01 2020 [130] F Chateau and S Anvar, “A Framework for the Development and Integration of Configurations within Real-time, Embedded and Distributed Software in HEP Experiments,” in 2007 15th IEEE-NPSS Real-Time Conference, pp 1–6, April 2007 [131] H Baba, T Ichihara, et al., “New data acquisition system for the RIKEN Radioactive Isotope Beam Factory,” Nucl Instr Meth In Phys Res A, vol 616, no 1, pp 65 – 68, 2010 (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 106 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) REFERENCES [132] H Baba, T Ichihara, et al., “DAQ coupling in RIKEN RIBF,” in 2014 19th IEEE-NPSS Real Time Conference, pp 1–5, May 2014 [133] H Blok, E Offermann, C D Jager, and H D Vries, “Path reconstruction and resolution improvement in magnetic spectrometers,” Nucl Instr Meth In Phys Res A, vol 262, no 2, pp 291 – 297, 1987 [134] M Berz, K Joh, et al., “Reconstructive correction of aberrations in nuclear particle spectrographs,” Phys Rev C, vol 47, pp 537–544, Feb 1993 [135] D Bazin, J Caggiano, et al., “The S800 spectrograph,” Nucl Instr Meth In Phys Res B, vol 204, pp 629 – 633, 2003 14th International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications [136] R Grzywacz, R Anne, et al., “Identification of µs-isomers produced in the fragmentation of a 112 Sn beam,” Phys Lett B, vol 355, no 3, pp 439 – 446, 1995 [137] B D Linh, N D Ton, et al., “Particle identification for Z = 25 – 28 exotic nuclei from SEASTAR experimental data,” Nuclear Science and Technology, vol 7, no 2, pp 08 – 15, 2017 [138] J Hwang, Study of 19 C by One-Neutron Knockout Reaction with a Carbon Target PhD thesis, Deparment of Physics and Astronomy, College of Natural Sciences, SEOUL National University, 2015 [139] “smsimulator.” http://be.nucl.ap.titech.ac.jp/~nebula/simulator.php Accessed: 2020-05-10 [140] T Kobayashi, “Memo for S09 run,” tech rep., RIKEN, 16-Apr-2017 [141] S Leblond, Structure des isotopes de bore et de carbone riches en neutrons aux limites de la stabilité PhD thesis, Université CAEN Normandie, 2016 [142] Y Kubota, Neutron-neutron correlation in Borromean nucleus 11 Li via the (p, pn) reac- tion PhD thesis, University of Tokyo, 2017 [143] B M Godoy, Structure and neutron decay of the unbound Beryllium isotopes 15,16 Be PhD thesis, Université CAEN Normandie, 2019 [144] “SEASTAR3 Analysis meeting.” Private Communication, 2017 - 2018 [145] C Sidong, SEASTAR3 Analysis report. Private Communication, 2017 - 2018 (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 107 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) REFERENCES [146] E Browne and J Tuli, “Nuclear Data Sheets for A = 60,” Nucl Data Sheets, vol 114, no 12, pp 1849 – 2022, 2013 [147] E McCutchan and A Sonzogni, “Nuclear Data Sheets for A = 88,” Nucl Data Sheets, vol 115, pp 135 – 304, 2014 [148] E Browne and J Tuli, “Nuclear Data Sheets for A = 137,” Nucl Data Sheets, vol 108, no 10, pp 2173 – 2318, 2007 [149] Y Khazov, A Rodionov, and F Kondev, “Nuclear Data Sheets for A = 133,” Nucl Data Sheets, vol 112, no 4, pp 855 – 1113, 2011 [150] O Tarasov and D Bazin, “LISE++: Radioactive beam production with in-flight separators,” Nucl Instr Meth In Phys Res B, vol 266, no 19, pp 4657 – 4664, 2008 Proceedings of the XVth International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications [151] “The National Nuclear Data Center.” https://www.nishina.riken.jp/collaboration/ SUNFLOWER/misc/download/simulation.php Accessed: 2020-07-10 [152] C Santamaria, C Louchart, et al., “Extension of the N = 40 Island of Inversion towards N = 50: Spectroscopy of 66 Cr, 70,72 Fe,” Phys Rev Lett., vol 115, p 192501, Nov 2015 [153] N Paul, A Corsi, et al., “Are There Signatures of Harmonic Oscillator Shells Far from Stability? First Spectroscopy of 110 Zr,” Phys Rev Lett., vol 118, p 032501, Jan 2017 [154] S Chen, P Doornenbal, et al., “Low-lying structure and shape evolution in neutron-rich Se isotopes,” Phys Rev C, vol 95, p 041302, Apr 2017 [155] L Olivier, Nuclear structure in the vicinity of Ni : in-beam gamma-ray spectroscopy of Cu through proton knockout PhD thesis, Université Paris-Saclay, 2017 [156] T Lokotko, Shape Co-Existence of Neutron-Rich 69,71,73 Co Nuclei PhD thesis, The Uni- versity of Hong Kong, 2019 [157] S Baker and R D Cousins, “Clarification of the use of CHI-square and likelihood functions in fits to histograms,” Nucl Instr Meth In Phys Res., vol 221, no 2, pp 437 – 442, 1984 [158] R Taniuchi, In-beam gamma-ray spectroscopy of 78 Ni PhD thesis, The University of Tokyo, 2018 [159] X L Chung, B D Linh, et al., “Spectroscopy of the neutron-rich iron isotope 68 Fe, - to be published (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) 108 download by : skknchat@gmail.com (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn) (Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)(Luỏưn.Ăn.tiỏn.sâ).nghiên.cỏằâu.cỏƠu.trc.vỏằã.cỏằĐa.cĂc.ỏằng.vỏằ.giu.neutron.49cl.v.49ar.thng.qua.phỏÊn.ỏằâng.loỏĂi.mỏằt.nucleon.50ar(p.2p).v.50ar(p.pn)

Ngày đăng: 03/12/2023, 13:58

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan