Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 115 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
115
Dung lượng
2,71 MB
Nội dung
VIETNAM NATIONAL UNIVERSITY, HANOI VIETNAM JAPAN UNIVERSITY KHIN PHYU SIN COMPRESSIBILITY CHARACTERISTICS OF SOFT CLAYS IN THE RED RIVER DELTA h MASTER’S THESIS VIETNAM NATIONAL UNIVERSITY, HANOI VIETNAM JAPAN UNIVERSITY KHIN PHYU SIN COMPRESSIBILITY CHARACTERISTICS OF SOFT CLAYS IN THE RED RIVER DELTA h MAJOR: INFRASTRUCTURE ENGINEERING CODE: 8900201.04 QTD RESEARCH SUPERVISOR: Dr NGUYEN TIEN DUNG Hanoi, 2022 PLEDGE I have read and understood the plagiarism violations I pledge with personal honor that this research result is my own and does not violate the Regulation on prevention of plagiarism in academic and scientific research activities at VNU Vietnam Japan University (Issued together with Decision No 700/QD-ĐHVN dated 30/9/2021 by the Rector of Vietnam Japan University) AUTHOR OF THE THESIS Khin Phyu Sin h ABSTRACT Together with the development, requirement of rigorous foundation designs plays a vital role in the construction of sustainable infrastructure structure system in Song Hong or Red River Delta (RRD) as it is the hub of various economic activities Therefore, a comprehensive understanding about compressibility characteristics of soft clays from RRD not only could prevent geotechnical engineering problems but also could extend the benefit of structural designs in both economical and safety point of views This study mainly focuses on the determination of coefficient of consolidation with vertical and horizontal drainage directions as those parameters are highly essential for the ground improvement works using PVDs For this, laboratory tests and CPTu tests at four study sites in the delta were carried out to study the characteristics Eight methods for determining coefficient of consolidation with a peripheral drain (cr,PD) and that with a central drain (cr,CD) were reviewed and applied to the samples from the four test sites Analysis results indicate that the non-graphical method results in the h highest reliability whereas the Log-log and Steepest tangent methods result in the poorest reliability Based on the analysis results from consolidation test samples obtained from different geological locations in RRD, the ratio of cr,PD /cr,CD of intact and remolded samples varies from 0.6 to 0.8 and from 0.4 to 0.6, respectively The experimental ratio cr,PD /cr,CD value of intact samples is smaller than that from analytical solution (for n = 2.21) of approximate 1.0 and this is mainly attributed to the influence of drainage length of soil in two drainage types Numerical analysis results of consolidation tests (n = 2.21) show that cr,PD /cr,CD ratio value on average is similar to those experimentally obtained from the intact samples and the ratio varies significantly with the variation of n value The preconsolidation stress obtained from consolidation test and from CPTu-based correlation for the test sites indicate that the soft clays in the delta are predominantly low plasticity normally consolidated (NC) Additionally, correlations of Cc/e0 = 0.3864 and Cr/Cc = 0.1208 can be suggested for the clays in the delta ACKNOWLEDGEMENTS Firstly, the author would like to give her special gratitude to the JAIF scholarship for giving an opportunity to have such a kind of great learning experience in VJU, especially in MCE Furthermore, the author deeply indebted to Prof Nguyen Dinh Duc (MCE Director), Prof Hironori Kato (MCE co-director), Dr Nguyen Tien Dung (MCE coordinator), Assoc Prof Takeda Shinichi (MCE JICA expert), and Dr Nguyen Ngoc Vinh (MCE lecturer) for their kind supports, guidance, and recommendations in various aspects including during the lecture time and research period Moreover, I’m gratefully recognized the help and supports from Ms Hoa Bui (MCE program assistant), Mr Bui Hoang Tan (MCE Lab Technical) and Ms Pham Lan Huong (temporary program assistant) Finally, I would like to express my deepest gratitude to my supervisor Dr Nguyen Tien Dung (MCE coordinator) for his patient and enthusiastic supports, specific advice and h guidance on every step of performing the research works Additionally, very special thanks to my supervisor and his company (FECON) for letting me to apply the data from the study sites TABLE OF CONTENTS h LIST OF TABLES i LIST OF FIGURES ii LIST OF ABBREVIATIONS vi CHAPTER INTRODUCTION 1.1 General 1.2 Problem statement 1.3 Necessity of the study 1.4 Objectives 1.5 Scope of the study 1.6 Outline and structure of the thesis 1.6.1 Outline of the thesis 1.6.2 Structure of the thesis CHAPTER LITERATURE REVIEW 2.1 Geographical conditions of the RRD 2.2 Geological conditions of the RRD 2.3 Consolidation 12 2.3.1 Three stages of deformation in accordance with time during consolidation process 12 2.3.2 Consolidation theory (vertical and horizontal drainage cases) 14 2.4 Standardized methods to determine vertical coefficient of consolidation, cv 19 2.5 Methods to determine radial or horizontal coefficient of consolidation for central drain (CD), cr,CD case 19 2.6 Methods to determine radial or horizontal coefficient of consolidation for peripheral drain (PD) case, cr,PD 21 2.7 Compression index (Cc) 22 2.8 Recompression index (Cr) 23 2.10 Overconsolidation ratio (OCR) 25 2.11 Literature review about the previous study 27 CHAPTER METHODOLOGY 31 3.1 Collecting required information about the geography and geological condition of the RRD 31 3.2 Collecting required data from the study sites 31 3.3 Analyzing the data (radial or horizontal coefficient of consolidation, crPD or CD) 32 3.3.1 Orientation of the methods used in this study for the determiation of radial or horizontal cefficient of consolidation, crPD or CD 32 3.3.2 Ranking the methods 33 3.3.3 Evaluation of the correlation between cr,CD and cr,PD 35 3.3.4 Finding influent facts that cause the correlation between cr,PD and cr,CD is not equal to one 36 h 3.4 Analyzing the data (Coefficient of vertical consolidation, cv) 41 3.5 Evaluation of pꞌ, OCR, Cc, Cr 41 CHAPTER STUDY SITES AND ANALYSIS RESULTS 43 4.1 Study sites 43 4.1.1 DVIZ site and field test program 43 4.1.2 VSIP site and field test program 44 4.1.3 KC site and field test program 45 4.1.4 TPP site and field program 45 4.1.5 Laboratory tests 46 4.2 Soil profiles from the four study sites 49 4.2.1 Physical properties profiles 49 4.2.2 CPTu-based soil profiles 51 4.3 Analysis results of ranking the eight methods used for cr,CD (or cr,PD) determinations 52 4.3.1 Results of R2 and Root Mean Squared Error (RMSE) for intact samples 52 4.3.2 Results of R2 and Root Mean Squared Error (RMSE) for remolded samples 61 4.4 Evaluation of correlation between cr,CD and cr,PD 70 4.4.1 Correlation between cr,CD and cr,PD (Intact samples) 70 4.4.2 Correlation between cr,CD and cr,PD (Remolded samples) 72 4.4.3 Conclusion for the Correlation between cr,CD and cr,PD 74 4.4.4 Finding influent facts that cause the correlation between cr,PD and cr,CD is not equal to one 74 4.5 Evaluation of correlation between cr,CD and cv 75 4.5.1 Correlation between cr,CD and cv (Intact samples) 76 4.5.2 Correlation between cr,CD and cv (Remolded samples) 76 4.5.3 Conclusion for the Correlation between cr,CD and cv 77 4.6 Evaluation of correlation between cr,PD and cv 77 4.6.1 Correlation between cr,PD and cv (Intact samples) 77 4.6.2 Correlation between cr,PD and cv (Remolded samples) 78 4.6.3 Conclusion for the Correlation between cr,PD and cv 79 4.7 Evaluaion of preconsolidation pressure (pꞌ), compression index (Cc), recompression indexes (Cr), and overconsolidtion ration (OCR) 79 CHAPTER CONCLUSIONS AND RECOMMENDATIONS 83 5.1 Conclusions 83 5.2 Recommendations 83 PUBLISHED PAPERS IN PROCEEDINGS 85 RFERENCES 86 APPENDIX 89 LIST OF TABLES h Table 2.1 Standardized methods to determine vertical coefficient of consolidation, cv 19 Table 2.2 Existing methods for the determiation of cr from radial consolidatin test with a CD using incremental loading 20 Table 2.3 Existing methods for the determiation of cr from radial consolidatin test with a PD using incremental loading 21 Table 2.4 Soil terminology applied to stress history, FHWQ-NHI-16-072 , 2017) 26 Table 2.5 Differences between previous study and present study 28 Table 3.1 Input parmaeters used in Numerical analysis 39 Table 4.1 Summary table for the number of intact samples from four study sites 48 Table 4.2 Summary table for the number of remolded samples from four study sites 48 Table 4.3 cr,CD results obtained from sample no.18 of KC site 89 Table 4.4 cr,PD results obtained from sample no.18 of KC site 92 Table 4.5 Summary table for the results of R2 and RMSE values for intact samples (CD case) 54 Table 4.6 Summary table for the results of R2 and RMSE values for intact samples (PD case) 58 Table 4.7 Summary table for the ranked results of the eight methods (Intact samples) 60 Table 4.8 Summary table for the results of R2 and RMSE values for remolded samples (CD case) 63 Table 4.9 Summary table for the results of R2 and RMSE values for remolded samples (PD case) 67 Table 4.10 Summary table for the ranked results of the eight methods (Remolded samples) 70 Table 4.11 Summary table for the correlation results between cr,PD and cr,CD for the eight methods (Intact samples) 72 Table 4.12 Summary table for the correlation results between cr,PD and cr,CD for the eight methods (Remoded samples) 74 Table 4.13 Summary table for the correlation results between cr,PD and cr,CD by using Root t method based on the data obtained from PLAXIS software (10k kPa pressure range) 75 Table 4.14 Variation in cr,CD and cr,PD/cr,CD results based on different n vaules (10 kPa) 75 Table 4.15 Summary table for the correlation results between cr,CD and cv with the two standardized method (Intact samples) 76 Table 4.16 Summary table for the correlation results between cr,CD and cv with the two standardized method (Remolded samples) 77 i Table 4.17 Summary table for the correlation results between cr,PD and cv with the two standardized method (Intact samples) 78 Table 4.18 Summary table for the correlation results between cr,PD and cv with the two standardized method (Remolded samples) 79 Table 4.19 Summary table for the number of intact samples available to determine pꞌ, Cr, Cc, and OCR from four study sites 79 Table 4.20 Summary table for the results of pꞌ, Cr, Cc, and OCR from four study sites 95 Table 4.21 Summary table for the correlation results between Cc and e0, and Cc, and Cr 80 h ii LIST OF FIGURES Figure 1.1 Dissipation of excess pore water in both horizontal and vertical direction by installing PVD in underlying soft clays layer Figure 1.2 Settlements problems found in a construction site from Hai Phong city owing to the overestimation or underestimation effect of cr values Figure 1.3 Flow chart shows the outline of the thesis (a) general framework of the reseach; (b) flow of the analysis steps h Figure 2.1 (a) Topological zoning of the RRD; (b) Three main sectord of RRD zoing according to the origins of its formation (Phach et al., 2020) Figure 2.2 Cross section showing the five depositional Quaternary sediments from Hanoi city area in north-east to south-west direction 10 Figure 2.3 Alluvial delta plain with four paleoshorelines with ages of 3–2.5 Ka: 1.5–1 Ka, 0.7–0.5 Ka, and 0.3–0.1 Ka belonging to the highstand systems tract (amhHSTQ22— ) from Yen et al., 2021 11 Figure 2.4 Location of the seven cores (Tanabe et al., 2006 modified after Tanabe et al., 2003b) 12 Figure 2.5 Spring-cylinder model for consolidation in saturated clays or spring and piston analogy ilustrating the principle of 1D consolidation (Das, 2010) 12 Figure 2.6 Time-deformation plot during consolidation under a given load incrment (Das, 2010) 13 Figure 2.7 Idealized curve of e-log (’p) from oedometer test for determining compression index (after Mayne et al., 2001) 22 Figure 2.8 Casagrande (1936)’s method (Dung and Giao, 2005) 24 Figure 2.9 Silvs (1970)’s method (Dung, and Giao, 2005) 25 Figure 2.10 First-order relationship for preconsolidation stress from net cone resistance in clays, Mayne, 2007) 27 Figure 3.1 Sample collection for radial coefficient of consolidation, cr,PD or CD 31 Figure 3.2 Flow chart shows the orientation of the method that are used in this study 32 Figure 3.3 Flow chart shows the analyzed steps used for the determination of coefficient of radial consolidation, cr,PD or CD 33 Figure 3.4 Example of time (t) and measured settlement (m) data curve for the determination of cr,CD (or cr,PD) from KC site (Non-graphical method) 34 Figure 3.5 Example of (m) vs e graph for 800 kPa pressure range (Non-graphical method) 34 Figure 3.6 Probability density function of a normal random variable with mean () and variance () 35 Figure 3.7 Example of cr,CD/cr,PD vs f(x) curve from full-match method (intact sample) 36 Figure 3.8 Example of cr,CD vs cr,PD curve from full-match method (intact sample) 36 Figure 3.9 Variation in n values with changes in sandstone dimensions 37 Figure 3.10 Soil model construction in PLAXIS software for PD case 37 iii RFERENCES h Barron, R A (1948) Consolidation of Fine-Grained Soils by Drain Wells by Drain Wells Transactions of the American Society of Civil Engineers, 113(1), pp 718– 742 https://doi.org/10.1061/taceat.0006098 Berry, P L., & Wilkinson, W B (1969) The Radial Consolidation of Clay Soils.Géotechnique,19(2), pp 253–284 https://doi.org/10.1680/geot.1969.19.2.253 Briaud, J (2013) Geotechnical Engineering: Unsaturated and Saturated Soils (1st ed.) Wiley, pp 414415 Budhu, M (2011) Soil mechanics and foundations, 3rd edition, pp 245 Butterfield, R B (1979) A natural compression law for soils (an advance on e-log p’) Geotechnique, 29(4), pp 469–480 Chaney, R., Demars, K., Sridharan, A., Prakash, K., & Asha, S (1996) Consolidation Behavior of Clayey Soils Under Radial Drainage Geotechnical Testing Journal, 19(4), pp 421 https://doi.org/10.1520/gtj10719j Chaney, R., Demars, K., Robinson, R., & Allam, M (1998) Analysis of Consolidation Data by a Non-Graphical Matching Method Geotechnical Testing Journal, 21(2), pp 140 https://doi.org/10.1520/gtj10752j Chung, S G., Park, T R., Hwang, D Y., & Kweon, H J (2018) Full-Match Method to Determine the Coefficient of Radial Consolidation Geotechnical Testing Journal, 42(5), 20170459 https://doi.org/10.1520/gtj20170459 Das, B.M (2010) Principles of geotechnical engineering, 8th edition, pp 102, pp 379 Das, B.M (2014) Advanced Soil Mechanic, 4th edition, pp 436, pp 343347 Day, R W (2010) Foundation Engineering Handbook 2/E (2nd ed.) McGraw Hill Dung, N.T., Khin, P., Pham, Q., & Vu, A (2022, June) A comparative study on CPTubased soil classification methods: Case studies Cone Penetration Testing 2022, pp 610–616 https://doi.org/10.1201/9781003308829-88 Dung, N T and Giao, P H (2005) Review of some methods to determine the preconsolidation pressure and application for Mekong soft clay, In Proceedings of the International Workshop of Hanoi Geo-engineering, Hanoi, Vietnam, pp 44-54 Dung, N T., Pham, Q., & Khin, P (2021) A Comparative Study on the Applicability of CPTu-based Soil Classification Methods for Offshore Test Sites 4th Asia Pacific Meeting on Near Surface Geoscience & Engineering https://doi.org/10.3997/2214-4609.202177078 Eslami, A., Fellenius, B H (1997) Pile capacity by direct CPT and CPTu methods applied to 102 case histories Canadian Geotechnical Journal, 34(6), pp 886904 Fellenius, B.H (2021) Basics of foundation design (Jan 2021 ed.) Electronic edition 86 h FHWA-NHI-16-072 (2017) Geotechnical Engineering Circular No.5 Geotechnical Site Characterization, US Dept of Transportation, Federal Highway Administration, pp 8-26 Ganesalingam, D., Sivakugan, N., & Read, W (2013) Inflection Point Method to Estimate ch From Radial Consolidation Tests with Peripheral Drain Geotechnical Testing Journal, 36(5), 20120203 https://doi.org/10.1520/gtj20120203 Head, K H., & Epps, R (2011) Manual of Soil Laboratory Testing, Third Edition: Volume Two: Permeability, Shear Strength and Compressibility Tests (3rd ed.) Whittles Publishing Head, K H., & Epps, R (2014) Manual of Soil Laboratory Testing: Volume III: Effective Stress Tests, Third Edition (3rd ed.) Whittles Publishing Mayne, P W., National Research Council (U.S.) Transportation Research Board, National Cooperative Highway Research Program, American Association of State Highway and Transportation Officials, & United States Federal Highway Administration (2007) Cone Penetration Testing Transportation Research Board, National Research Council, pp 34 Mayne, P.W [33] (2001) Stress-strain-strength-flow parameters from enhanced in situ tests, In Proceedings of the International Conference on In-situ Measurement of Soil Properties and Case Studies, Bali, Indonesia, pp 27-48 Phach, P V., Lai, V C., Shakirov, R B., Le, D A., & Tung, D X (2020) Tectonic Activities and Evolution of the Red River Delta (North Viet Nam) in theHolocene.Geotectonic,54(1), pp 113–129 https://doi.org/10.1134/s0016852120010094 Robinson, R G (1997) Determination of radial coefficient of consolidation by the inflection point method Géotechnique, 47(5), 1079–1081 https://doi.org/10.1680/geot.1997.47.5.1079 Robertson, P K (1990) Soil classification using the cone penetration test Canadian Geotechnical Journal, 27(1), pp 151–158 https://doi.org/10.1139/t90-014 Suits, L D., Sheahan, T C., & Robinson, R G (2009) Analysis of Radial Consolidation Test Data Using a log-log Method Geotechnical Testing Journal, 32(2), 101034 https://doi.org/10.1520/gtj101034 Sridhar, G., & Robinson, R (2011b) Determination of radial coefficient of consolidation using log t method International Journal of Geotechnical Engineering, 5(4), pp 373–381 https://doi.org/10.3328/ijge.2011.05.04.373381 Sridharan, A., & Gurtug, Y (2005) Compressibility characteristics of soils Geotechnical and Geological Engineering, 23(5), pp 615–634 https://doi.org/10.1007/s10706-004-9112-2 Tanabe, S., Saito, Y., Lan Vu, Q., Hanebuth, T J., Lan Ngo, Q., & Kitamura, A (2006) Holocene evolution of the Song Hong (Red River) delta system, northern 87 Vietnam Sedimentary Geology, 187(1–2), pp 29–61 https://doi.org/10.1016/j.sedgeo.2005.12.00 Terzaghi, K (1943) Theoretical Soil Mechanics (1st ed.) Wiley Vinod, J S., Sridharan, A., & Indraratna, B (2010) Determination of Coefficient of Radial Consolidation Using Steepest Tangent Fitting Method Geotechnical and Geological Engineering, 28(4), pp 533–536 https://doi.org/10.1007/s10706010-9330-8 William, N (2019) Ise statistics for engineers and scientists (Ise Hed Irwin Industrial Engineering) (5th ed.) McGraw-Hill Education pp.351, 720–725 ISBN-13: 978-1260547887 Yen, H P H., Nhan, T T T., Nghi, T., Toan, N Q., Khien, H A., Lam, D D., van Long, H., Thanh, D X., Hung, N T., Trang, N T H., Dien, T N., Tuyen, N T., Truong, T X., Dung, T T., Thao, N T P., & Lan, V Q (2021b) Late Pleistocene-Holocene sedimentary evolution in the coastal zone of the Red RiverDelta.Heliyon,7(1), e05872 https://doi.org/10.1016/j.heliyon.2020.e05872 h 88 APPENDIX Table shows an example taken from sample no.18 of KC site to show the results of cr Table 1: crCD results obtained from sample no.18 of KC site Sample name Pressure d0 d100 cr (kPa) (mm) (mm) (mm2/min) Method name Root t 25 0.042 0.339 7.384 KC-18 (M 31)-CD25 Log (de2/t) 25 0.019 0.314 10.000 KC-18 (M 31)-CD25 Inflection Point 25 0.019 0.291 10.820 KC-18 (M 31)-CD25 Non-graphical 25 0.019 0.314 9.818 KC-18 (M 31)-CD25 Log-Log 25 0.016 0.379 10.936 KC-18 (M 31)-CD25 Steepest tangent 25 0.020 0.314 10.577 KC-18 (M 31)-CD25 Log t 25 0.015 0.307 10.040 KC-18 (M 31)-CD25 Full-match 25 0.013 0.278 11.955 KC-18 (M 31)-CD50 Root t 50 0.054 0.361 9.853 KC-18 (M 31)-CD50 Log (de2/t) 50 0.025 0.346 13.000 KC-18 (M 31)-CD50 Inflection Point 50 0.025 0.362 11.887 KC-18 (M 31)-CD50 Non-graphical 50 0.025 0.346 13.032 KC-18 (M 31)-CD50 Log-Log 50 0.019 0.429 9.792 KC-18 (M 31)-CD50 Steepest tangent 50 0.015 0.346 13.401 KC-18 (M 31)-CD50 Log t 50 0.018 0.328 15.496 KC-18 (M 31)-CD50 Full-match 50 0.018 0.301 16.148 KC-18 (M 31)-CD100 Root t 100 0.078 0.538 14.386 KC-18 (M 31)-CD100 Log (de2/t) 100 0.056 0.526 17.000 h KC-18 (M 31)-CD25 89 Sample name Pressure d0 d100 cr (kPa) (mm) (mm) (mm2/min) Method name Inflection Point 100 0.056 0.517 14.298 KC-18 (M 31)-CD100 Non-graphical 100 0.056 0.526 16.285 KC-18 (M 31)-CD100 Log-Log 100 0.057 0.659 8.818 KC-18 (M 31)-CD100 Steepest tangent 100 0.051 0.526 17.532 KC-18 (M 31)-CD100 Log t 100 0.055 0.523 16.555 KC-18 (M 31)-CD100 Full-match 100 0.055 0.466 16.803 KC-18 (M 31)-CD200 Root t 200 0.035 0.413 32.369 KC-18 (M 31)-CD200 Log (de2/t) 200 0.012 0.406 37.000 KC-18 (M 31)-CD200 Inflection Point 200 0.012 0.384 35.805 KC-18 (M 31)-CD200 Non-graphical 200 0.012 0.406 37.931 KC-18 (M 31)-CD200 Log-Log 200 0.009 0.605 20.939 KC-18 (M 31)-CD200 Steepest tangent 200 0.008 0.406 42.871 KC-18 (M 31)-CD200 Log t 200 0.007 0.418 35.556 KC-18 (M 31)-CD200 Full-match 200 0.013 0.400 36.472 KC-18 (M 31)-CD400 Root t 400 0.077 0.671 32.369 KC-18 (M 31)-CD400 Log (de2/t) 400 0.067 0.706 30.000 KC-18 (M 31)-CD400 Inflection Point 400 0.067 0.693 32.516 KC-18 (M 31)-CD400 Non-graphical 400 0.067 0.706 31.638 KC-18 (M 31)-CD400 Log-Log 400 0.085 0.859 20.327 KC-18 (M 31)-CD400 Steepest tangent 400 0.053 0.706 32.981 KC-18 (M 31)-CD400 Log t 400 0.082 0.705 29.355 KC-18 (M 31)-CD400 Full-match 400 0.064 0.631 33.087 h KC-18 (M 31)-CD100 90 Sample name Pressure d0 d100 cr (kPa) (mm) (mm) (mm2/min) Method name KC-18 (M 31)-CD800 Root t 800 0.095 0.812 36.829 KC-18 (M 31)-CD800 Log (de2/t) 800 0.074 0.837 37.000 KC-18 (M 31)-CD800 Inflection Point 800 0.074 0.791 33.019 KC-18 (M 31)-CD800 Non-graphical 800 0.074 0.837 35.788 KC-18 (M 31)-CD800 Log-Log 800 0.067 1.122 27.645 KC-18 (M 31)-CD800 Steepest tangent 800 0.031 0.837 49.832 KC-18 (M 31)-CD800 Log t 800 0.067 0.854 36.209 KC-18 (M 31)-CD800 Full-match 800 0.079 0.771 33.945 h 91 Table shows an example taken from sample no.18 of KC site to show the results of cr for PD case Table crPD results obtained sample no.18 of KC site Pressure Sample name Method name cr (kPa) d0 (mm) d100 (mm) (mm2/min) Root t 25 0.053 0.304 3.415 KC-18-PD25 Log (de2/t) 25 0.022 0.231 7.000 KC-18-PD25 Inflection Point 25 0.022 0.240 5.655 KC-18-PD25 Non-graphical 25 0.022 0.231 6.964 KC-18-PD25 Log-Log 25 0.020 0.266 6.829 KC-18-PD25 Steepest tangent 25 0.029 0.231 5.254 KC-18-PD25 Log t 25 0.018 0.283 4.775 KC-18-PD25 Full-match 25 0.019 0.214 7.035 KC-18-PD50 Root t 50 0.117 0.407 4.322 KC-18-PD50 Log (de2/t) 50 0.080 0.332 9.000 KC-18-PD50 Inflection Point 50 0.080 0.325 7.235 KC-18-PD50 Non-graphical 50 0.080 0.332 8.267 KC-18-PD50 Log-Log 50 0.077 0.258 7.884 KC-18-PD50 Steepest tangent 50 0.075 0.332 9.185 KC-18-PD50 Log t 50 0.072 0.411 5.262 KC-18-PD50 Full-match 50 0.078 0.278 7.091 KC-18-PD100 Root t 100 0.090 0.468 6.162 KC-18-PD100 Log (de2/t) 100 0.058 0.465 7.000 KC-18-PD100 Inflection Point 100 0.058 0.415 5.955 h KC-18-PD25 92 Pressure Sample name Method name cr (kPa) d0 (mm) d100 (mm) (mm2/min) Non-graphical 100 0.058 0.465 6.555 KC-18-PD100 Log-Log 100 0.060 0.472 7.364 KC-18-PD100 Steepest tangent 100 0.054 0.465 9.195 KC-18-PD100 Log t 100 0.061 0.450 7.355 KC-18-PD100 Full-match 100 0.043 0.389 8.278 KC-18-PD200 Root t 200 0.113 0.566 8.222 KC-18-PD200 Log (de2/t) 200 0.061 0.592 10.000 KC-18-PD200 Inflection Point 200 0.061 0.515 9.517 KC-18-PD200 Non-graphical 200 0.061 0.592 8.910 KC-18-PD200 Log-Log 200 0.058 0.770 5.786 KC-18-PD200 Steepest tangent 200 0.018 0.592 16.354 KC-18-PD200 Log t 200 0.073 0.613 7.962 KC-18-PD200 Full-match 200 0.054 0.546 8.770 KC-18-PD400 Root t 400 0.148 0.690 10.229 KC-18-PD400 Log (de2/t) 400 0.109 0.692 11.000 KC-18-PD400 Inflection Point 400 0.109 0.631 9.463 KC-18-PD400 Non-graphical 400 0.109 0.692 10.460 KC-18-PD400 Log-Log 400 0.098 0.765 14.307 KC-18-PD400 Steepest tangent 400 0.122 0.692 12.444 KC-18-PD400 Log t 400 0.093 0.704 11.432 KC-18-PD400 Full-match 400 0.104 0.592 10.396 KC-18-PD800 Root t 800 0.190 0.857 12.005 h KC-18-PD100 93 Pressure Sample name Method name cr (kPa) d0 (mm) d100 (mm) (mm2/min) KC-18-PD800 Log (de2/t) 800 0.153 0.884 12.000 KC-18-PD800 Inflection Point 800 0.153 0.816 11.889 KC-18-PD800 Non-graphical 800 0.153 0.884 11.465 KC-18-PD800 Log-Log 800 0.136 1.006 13.551 KC-18-PD800 Steepest tangent 800 0.068 0.884 22.361 KC-18-PD800 Log t 800 0.149 0.900 11.957 KC-18-PD800 Full-match 800 0.151 0.753 10.625 h 94 Table Summary table for the results of pꞌ, Cr, Cc, and OCR from four study sites CPTu Oedometer test dissipation Sample test Depth (m) Name p e0 Cr v Cc p OCR (kPa) (kPa) OCR (kPa) 910 1.03 0.06 0.25 138 102 1.35 129 1.26 910 1.03 0.06 0.23 142 102 1.39 129 1.26 910 1.03 0.07 0.42 178 102 1.74 129 1.26 910 1.03 0.07 0.32 119 102 1.16 129 1.26 910 1.03 0.05 0.29 126 102 1.23 129 1.26 DVIZ 910 1.03 0.06 0.32 92 102 0.90 129 1.26 DVIZ 16.517.3 1.20 0.05 0.29 213 153 1.39 252 1.65 DVIZ 11 10.511.5 1.20 0.05 0.59 132 113 1.17 118 1.05 DVIZ 12 10.511.5 1.42 0.09 0.65 96 113 0.85 118 1.05 DVIZ DVIZ (VD1) DVIZ h (VD2) DVIZ (VD1) DVIZ (VD2) 95 CPTu Oedometer test dissipation Sample test Depth (m) Name p e0 Cr v Cc p OCR (kPa) (kPa) OCR (kPa) 1818.7 1.20 0.04 0.56 237 164 1.44 349 2.13 DVIZ 14 1818.7 1.28 0.06 0.56 223 164 1.36 349 2.13 DVIZ 15 19.520.5 1.27 0.03 0.60 303 179 1.70 415 2.33 DVIZ 16 19.520.5 1.28 0.05 0.49 191 179 1.07 415 2.33 DVIZ 17 89 1.03 0.05 0.19 115 95 1.21 135 1.42 VSIP 13.413.5 1.49 0.09 0.68 98 117 0.84 192 1.64 VSIP 11.912 1.26 0.08 0.61 98 106 0.92 178 1.67 VSIP 11.912 1.49 0.08 0.79 159 106 1.49 178 1.67 VSIP 7.98.0 1.33 0.05 0.50 189 77 2.45 173 2.24 VSIP 7.98.0 1.33 0.05 0.65 156 77 2.02 173 2.24 VSIP 13.613.7 1.39 0.05 0.67 162 118 1.38 189 1.61 VSIP 9.39.4 1.33 0.06 0.54 145 87 1.66 168 1.93 VSIP 10 12.212.3 1.49 0.07 0.68 145 109 1.33 180 1.66 h DVIZ 13 96 CPTu Oedometer test dissipation Sample test Depth (m) Name p e0 Cr v Cc p OCR (kPa) (kPa) OCR (kPa) 14.514.6 1.39 0.03 0.65 180 124 1.45 224 1.81 VSIP 12 12.412.5 1.49 0.10 0.65 123 110 1.12 203 1.84 VSIP 13 11.912 1.49 0.08 0.64 135 106 1.27 178 1.67 VSIP 14 14.614.7 1.39 0.03 0.70 211 125 1.69 227 1.82 VSIP 15 14.714.8 1.39 0.03 0.77 242 126 1.93 231 1.84 VSIP 16 8.38.4 1.33 0.06 0.45 158 80 1.97 174 2.16 VSIP 17 7.87.9 1.33 0.06 0.54 198 76 2.60 178 2.33 VSIP 18 14.414.5 1.39 0.04 0.68 189 123 1.53 200 1.62 VSIP 20 15.415.5 1.41 0.03 0.64 180 131 1.38 268 2.05 VSIP 21 16.917 1.41 0.05 0.49 166 141 1.18 569 4.03 VSIP 22 8.18.2 1.33 0.06 0.50 211 79 2.68 252 3.20 VSIP 23 11.511.6 1.26 0.05 0.70 164 103 1.59 175 1.69 VSIP 24 12.312.4 1.49 0.08 0.73 140 109 1.28 187 1.72 h VSIP 11 97 CPTu Oedometer test dissipation Sample test Depth (m) Name p e0 Cr v Cc p OCR (kPa) (kPa) OCR (kPa) 9.59.6 1.33 0.06 0.57 146 89 1.65 172 1.94 VSIP 26 9.79.8 1.26 0.06 0.54 149 90 1.65 177 1.96 VSIP 28 7.07.1 1.09 0.09 0.41 145 70 2.05 106 1.51 VSIP 30 1212.1 1.49 0.09 0.65 136 107 1.27 179 1.67 VSIP 31 14.814.9 1.39 0.04 0.73 227 126 1.80 235 1.86 KC 7.938.03 1.22 0.07 0.33 75 152 0.49 135 0.89 KC 7.837.93 1.22 0.08 0.33 70 151 0.46 117 0.78 KC 10.010.1 1.11 0.10 0.51 115 189 0.61 194 1.02 KC 11.912.0 1.09 0.12 0.43 95 223 0.43 229 1.03 KC 14.0514.15 1.09 0.05 0.32 140 259 0.54 183 0.71 KC 13.9514.05 1.21 0.07 0.37 188 259 0.73 183 0.71 KC 15.0515.15 1.35 0.06 0.49 185 276 0.67 211 0.77 0.10 0.50 167 291 0.57 319 1.10 KC 10 15.916.0 1.35 h VSIP 25 98 CPTu Oedometer test dissipation Sample test Depth (m) Name p e0 Cr v Cc p OCR (kPa) (kPa) OCR (kPa) 20.8520.95 1.80 0.10 0.50 134 325 0.41 290 0.89 KC 13 20.9521.05 2.01 0.07 0.51 202 326 0.62 274 0.84 KC 14 22.0522.15 1.76 0.06 0.51 206 334 0.62 258 0.77 KC 15 21.9522.05 1.80 0.08 0.58 202 334 0.60 258 0.77 KC 17 24.9525.05 0.71 0.04 0.17 125 357 0.35 394 1.10 1.57 0.08 0.38 151 346 0.44 246 0.71 25.0525.05 0.71 0.05 0.14 93 358 0.26 414 1.15 KC 18 KC 19 23.924.0 h KC 12 TPP 7.57.6 0.90 0.10 0.38 65 62 1.06 154 2.49 TPP 7.27.3 0.90 0.12 0.31 53 59 0.89 109 1.83 TPP 10.911.1 0.86 0.06 0.36 81 88 0.93 118 1.34 TPP 11.111.2 0.86 0.04 0.40 118 88 1.33 118 1.34 TPP 13.513.6 0.90 0.07 0.30 51 106 0.48 166 1.56 TPP 13.613.7 0.90 0.04 0.31 106 107 0.99 141 1.32 99 CPTu Oedometer test dissipation Sample test Depth (m) Name p e0 Cr v Cc p OCR (kPa) (kPa) OCR (kPa) 12.412.5 0.90 0.05 0.24 96 98 0.98 113 1.15 TPP 12.512.6 0.90 0.05 0.30 63 99 0.63 164 1.66 TPP 15.415.5 1.30 0.07 0.41 149 121 1.23 37 0.31 TPP 10 15.615.7 1.30 0.05 0.49 109 122 0.89 159 1.30 TPP 11 17.918 1.07 0.08 0.33 84 140 0.60 199 1.42 TPP 12 18.018.15 1.07 0.07 0.36 153 141 1.08 179 1.26 TPP 13 19.319.45 1.07 0.06 0.42 186 152 1.23 164 1.08 TPP 14 19.4519.6 1.07 0.07 0.36 129 153 0.85 179 1.17 h TPP 100