Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 113 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
113
Dung lượng
1,64 MB
Nội dung
ANALYSIS AND DESIGN OF BRIDGE AND CULVERT Practical Training Report Submitted in partial fulfillment for the requirements of the degree MASTER OF TECHNOLOGY In STRUCTURAL ENGINEERING By PAUL TOM P 13ST17F DEPARTMENT OF CIVIL ENGINEERING NATIONAL INSTITUTE OF TECNOLOGY KARNATAKA SURATHKAL, MANGALORE – 575025 July 2014 CERTIFICATE This is to certify that the Practical Training Report entitled ANALYSIS AND DESIGN OF BRIDGE AND CULVERT submitted by PAUL TOM P (Register Number: 13ST17F) as the record of the work carried out by him, is accepted as the Practical Training Report submission in partial fulfillment of the requirements for the award of degree of Master of Technology in Structural Engineering in the Department of Civil Engineering Head of Department Faculty Advisor Dr Katta Venkataramana Dr K Swaminathan Department of Civil Engineering Professor - Civil Engineering NIT Karnataka, Surathkal NIT Karnataka, Surathkal ACKNOWLEDGEMENT I am extremely thankful to Dr Katta Venkataraman, Professor & Head, Department of Civil Engineering, National Institute of Technology, Karnataka for giving me the opportunity to undergo internship training at Larsen & Toubro, Chennai My special thanks to Dr K Swaminathan, Professor of the Civil Engineering Department for all his help and guidance I would like to express my deepest sense of respect and indebtedness to my Internship Supervisor, Mr Sadasivam V and Mrs Nisha K.C., EDRC-Transportation IC, Larsen & Toubro, Chennai, for their consistent support, guidance, encouragement and advice during the project I owe my wholehearted thanks to Mr Lingarajan K., who has been my Internship Mentor for taking time out of his busy schedule for my doubts and clarifications I also thank the entire staff of the company for their cooperation and assistance during the course of my project I hope that I can build upon the experience and knowledge that I have gained and make a valuable contribution towards this industry in the coming future i CONTENTS ACKNOWLEDGEMENT…………………………………….………………………… i CONTENTS…………………………………………………………………………… ii CHAPTER 1: INTRODUCTION 1.1 BRIDGES…………………………………………………………… ………….1 1.2 CULVERT……………………………………………………………….…….….1 1.3 LOADS AND STRESSES……………………………………………………… 1.4 VEHICLE CLASSIFICATIONS……………………………………………… CHAPTER 2: ANALYSIS AND DESIGN OF SUBSTRUCTURE 2.1 DETAILS OF THE STRUCTURE …………………………………………….…4 2.1.1 Determination of Permissible Stresses…………………………………….…6 2.2 CALCULATION OF LOADS AND MOMENTS……………………………… 2.2.1 Dead Load Analysis……………………………………………………… 2.2.2 Live Load Analysis………………………………………………….… .8 2.2.3 Calculation of Longitudinal Forces ……………………………………… 2.2.4 Bearings…………… ……………………………………………… 2.2.4.1 Fixed Bearing………………………………………………….…10 2.2.4.3 Free Bearing…………………………………………………… 10 2.2.5 Wind Forces …………………………………………………………….….10 2.2.6 Seismic Forces…………………………………………………………… 11 2.2.7 Load Combinations………………………………………………… ……12 2.3 PIER DESIGN……… ……………………………………………………….…13 2.3.1 Design of Pier Cap …………………………………………………… … 14 2.3.2 Design of Footing ……………… …………………………………… …15 CHAPTER 3: ANALYSIS AND DESIGN OF SUPERSTRUCTURE 3.1 SECTION PROPERTIES……………………………………………………… 17 3.2 LOAD ANALYSIS………………………………………………………… ….18 3.2.1 Live Load Positions……………………………………………………… 18 3.2.2 Load Summary…………………………………………… ………… 20 3.2.3 Load Combinations………………………………………… ………… 20 ii 3.3 GIRDER DESIGN……………………………………………………………….20 3.4 SHEAR CONNECTOR DESIGN………………………………………… … 21 3.5 DIFFERENTIAL SHRINKAGE STRESS……………………………………….21 3.6 DIAPHRAGM DESIGN…………………………………………………… ….22 CHAPTER 4: ANALYSIS AND DESIGN OF BOX CULVERT 4.1 DETAILS OF THE STRUCTURE …………………………………………… 25 4.2 MODELLING OF THE STRUCTURE……………………………………… 25 4.3 LOAD CALCULATIONS………………………………………………… … 25 4.3.1 Dead Load……………………………………………………………… 25 4.3.2 Live Load………………………………………………………………… 26 4.3.3 Load Combinations………………………………………………… ……28 4.4 DESIGN OF BOX SECTION……………………………………………………29 4.4.1 Design for Flexure………………………………………………………….29 4.4.2 Design for Shear……………………………………………………………31 REFERENCES ………………………………………………………………… …… 32 ANNEXURE : SAMPLE DESIGN OF SUB-STRUCTURE ANNEXURE : SAMPLE DESIGN OF SUPER-STRUCTURE iii INTRODUCTION This internship was carried out at Larsen & Toubro, EDRC, Transportation IC, with the objective of gaining first-hand knowledge about the technical practices in a structural design office, office ethics and corporate lifestyle L & T Transportation Infrastructure handles major roadway projects which includes National and State Highways all around India and associated structures like flyovers, Vehicle Underpass (VUP), Pedestrian Underpass (PUP), Rail Over Bridge (ROB), major & minor bridges and cross-drainage works like culverts The structural design wing of this department handles these structures of all Infrastructure Projects The design of the VUP Sub-structure & Super-structure and box culvert included in this internship report are designed based on the Working Stress Method as per the design codes published by The Indian Roads Congress 1.1 BRIDGES A bridge is a structure having a total length above 6m between the inner face of the dirt walls for carrying traffic or other moving loads over a depression or obstruction such as channel, road or railway They are classified as minor or major bridges as per the criteria given below: Minor Bridges – Span greater than 6m upto 60m Major Bridges – Span greater than 60m 1.2 CULVERT A culvert is a cross-drainage structure having a total length of 6m or less between the inner faces of the dirt wall or extreme vent-way boundaries measured at right angles thereto The types of culverts are: Box Culvert Pipe Culvert RCC Solid Slab Culvert 1.3 LOADS, FORCES AND STRESSES The loads and stresses considered in the design are as follows (as per IRC 6-2010): Dead Load Live Load Impact factor due to vehicular live load Vehicle Collision Load Wind Load Longitudinal forces due to braking Earth Pressure (including live load surcharge) Temperature Effect Seismic Forces 1.4 VEHICLE CLASSIFICATIONS The major classifications of vehicles considered as live load for design are CLASS 70R WHEELED Adopted on all roads on which permanent bridges and culverts are constructed Should also be checked for Class A Loading CLASS 70R TRACKED 40 TONNES BOGIE LOAD CLASS A Adopted on all roads on which permanent bridges and culverts are constructed ANALYSIS AND DESIGN OF SUBSTRUCTURE 2.1 DETAILS OF THE STRUCTURE 1.5 1.5 FIXED FREE Wearing coat Slope 3000 RCC DIAPHRAGM JACK LOCATION 1500 3500 RCC PIER CAP RCC PIER Fig 1: Typical section of a pier This includes all the details required by the designer for carrying out analysis For the substructure design of abutment piers the details required are: Grade of concrete and steel Span of Bridge Check for neutral axis If neutral axis lies within the range, for kdDf ((bf - bw) x Df) x (kd - Df/2) + (bw x kd) x kd/2 = m x Ast x (d - kd) 6.21E+05 x kd - 7.14E+07 + 150.00 kd^2 = 1.93E+08 = 0.00 150.00 kd^2 + 7.42E+05 kd - 2.64E+08 Revised Neutral axis depth, kd 333.71 mm Neutral Axis depth factor, k 0.21 Stresses for given moment 1.21E+05 kd Bending Moment , M = (bf x (0.5 x c x kd) x (d - kd/3)) - ((bf - bw) x (0.5 x c' x (kd - Df) x (d - Df - (kd - Df)/3)) 2.10E+09 = 7.44E+08 c - 5.80E+07 cx 2.10E+09 = 6.86E+08 c where c' = ( c x (kd - Df)/kd) Actual stress in concrete, c 3.07 Mpa Actual stress in bottom most steel layer st = (D-d1'-kd) x c x m/kd 122.06 Mpa Top of Girder 3.07 MPa 122.06 MPa Final Stresses Actual stess in concrete at top of girder flange, c 7.89 Mpa Actual Stress in bottom most steel layer, st 215.90 MPa Actual stress within permissible limit 13 Curtailment Design of Composite girder for Service stage bf σc σ c' kd Neutral Axis D d bw σst/m Width of the web, bw Width of the flange, bf Depth of the flange, Df Overall depth of the section, D Clear Cover Effective depth Moment to be resisted by the section, Me Diameter of main bar No of bars Diameter of main bar No of bars Diameter of main bar No of bars Effective cover provided Area of steel provided Grade of concrete adopted Permissible compressive stress in bending Permissible tensile stress in reinforcement Modular Ratio, m Factor for critical neutral axis 300.00 3000.00 230.00 1730.00 40.00 1630.00 1531.37 32.00 5.00 68.00 32.00 5.00 132.00 32.00 0.00 196.00 100.00 8042.48 40.00 mm mm mm mm mm mm kNm mm at Nos mm from bottom of girder mm at Nos mm from bottom of girder mm at Nos mm from bottom of girder mm mm2 MPa 13.33 MPa 240.00 MPa 10.00 0.36 14 Check for neutral axis If neutral axis lies within the range, for kdDf ((bf - bw) x Df) x (kd - Df/2) + (bw x kd) x kd/2 = m x Ast x (d - kd) 6.21E+05 x kd - 7.14E+07 + 150.00 kd^2 = 1.31E+08 = 0.00 150.00 kd^2 + 7.01E+05 kd - 2.03E+08 Revised Neutral axis depth, kd 272.79 mm Neutral Axis depth factor, k 0.17 Stresses for given moment 8.04E+04 kd Bending Moment , M = (bf x (0.5 x c x kd) x (d - kd/3)) - ((bf - bw) x (0.5 x c' x (kd - Df) x (d - Df - (kd - Df)/3)) 1.53E+09 = 6.30E+08 c - 1.26E+07 cx 1.53E+09 = 6.17E+08 c where c' = ( c x (kd - Df)/kd) Actual stress in concrete, c 2.48 Mpa Actual stress in bottom most steel layer st = (D-d1'-kd) x c x m/kd 126.35 Mpa Top of Girder 2.48 MPa 126.35MPa Modular Ratio 10.00 Final Stresses (Curtailment design) Actual stess in concrete at top of girder flange, c 5.99 Mpa Actual Stress in bottom most steel layer, st 224.43 MPa Actual stress within permissible limit Adding stress due to differential shrinkage Final stress in steel 226.79 Mpa 15 SHEAR DESIGN Design for shear at distance 'd' away from the support of girder Shear at 'd' distance away from support Nominal shear stress, v Permissible Shear Stress, 648.39 kN 1.35 MPa 2.50 MPa c,max Refer IRC 21-200 Table 12A , corresponding to M40 concrete Section is adequate Percentage Reinforcement at the section Design shear strength in concrete Shear in concrete, Vuc 2.52 % 0.60 MPa 287.64 kN Provide legged 12 mm dia stirrups @ Asv Sv sv Shear resistance of vertical stirrups Total Shear resistance at the section 125 mm spacing 226.19 mm 125.00 mm 200.00 MPa 578.33 kN 865.97 kN SAFE 41.55 mm SAFE Minimum shear reinforcement, Asv,min Design for shear at distance 0.25leff (4.25m) from the support of girder Shear at 4.25m distance away from support Nominal shear stress, v Permissible Shear Stress, 274.25 kN 0.56 MPa 2.50 MPa c,max Refer IRC 21-200 Table 12A , corresponding to M40 concrete Section is adequate Percentage Reinforcement at the section Design shear strength in concrete Shear in concrete, Vuc Provide legged 12 mm dia stirrups @ 1.64 % 0.51 MPa 249.39 kN 250 mm spacing 226.19 250.00 200.00 294.96 Total Shear resistance at the section 544.35 kN SAFE 83.09 mm SAFE Minimum shear reinforcement, Asv,min 16 mm mm MPa kN Asv Sv sv Shear resistance of vertical stirrups SHEAR CONNECTOR DESIGN 0.41 m Inertia of composite section Maximum shear due to SIDL ('d' away) Maximum shear due to live load ('d' away) Total shear (1.3DL + 1.5LL) 119.70 kN 310.11 kN 620.78 kN 3000 230 C.G of compressive area 321 1500 C.G of composite section 1274 300 Transformed compressive area of concrete flange, Ac CG of composite section Y,( Distance between CG of compressive area and that of composite section) Design Shear = VAY / I Provide legged Area of connector, As Permissible Shear Stress for fy Shear Capacity of connector, C Spacing Required Provided 0.69 m 1273.55 mm 0.32 m 338.23 kN/m 12 mm dia shear connectors @ 500 17 150 mm spacing 226.19 mm 435.00 Mpa 98.39 kN 290.91 mm 150.00 mm SAFE DIFFERENTIAL SHRINKAGE STRESSES Sectional properties at mid span of composite section of girder and slab Grade of concrete Total Area Total Depth of section CG Distance of NA from top of slab Distance of NA from bottom Moment of inertia Ztop Zbottom 40.00 1.32 1.73 1.20 0.53 1.20 0.41 0.77 0.34 Mpa m2 m m m m m4 m3 m3 As per BS 5400-4 1990 Cl 7.4.3.5 Mcs = ediff x Ecf x Acf x acent ediff - Differential Shrinkage Strain Ecf - Modulus of elasticity of the concrete flange Acf - Area of the effective concrete flange acent - Distance of the centroid of the concrete flange from the centroid of the concrete section Φ - Reduction coefficient to allow for creep 1.00E-04 31622.78 Mpa 0.69 m 0.34 m 0.43 Mcs Fcs 320.36 kNm 938.25 kN Stress in compression flange Stress due to direct compression Stress at top due to flexural bending Stress at bottom due to flexural bending Tension negative Total stress at top due to differential shrinkage Total stress at bottom due to differential shrinkage -1.36 MPa -1.36 0.71 0.42 -0.95 Mpa Mpa Mpa Mpa -0.23 Mpa -0.24 Mpa 0.71 MPa 0.42 MPa -0.23 MPa (+) (-) + (+) + = (-) (-) -0.95 MPa 18 -0.24 MPa DIAPHRAGM DESIGN Girder+Deck Slab+Wearing Coat Crash Barrier Diaphragm 1.5m 1m 2m 3m 2m 1m 1.5m Design of Longitudinal Reinforcement for Diaphargm Overall depth of diaphragm Width of the diaphragm Gross Area, Ag 1480.00 mm 400.00 mm 592000.00 mm2 Moment obtained from STAAD model Design sagging moment Design Hogging Moment 294.70 kNm 568.15 kNm Grade of concrete Grade of Steel IRC 21-2000 Table &10 40.00 Mpa 500.00 MPa st 240.00 Mpa sv 200.00 Mpa 13.33 MPa 10.00 0.28 0.91 1.69 cbc m k j Q Width of the section, b Effective depth required Clear cover Effective depth provided 400.00 916.23 50.00 1380.50 mm mm mm mm 1891.33 1184.00 1891.33 25.00 490.87 1963.50 SAFE mm2 mm2 mm2 mm mm2 Design of top reinforcement Ast,reqd Minimum steel to be provided Area of steel to be provided Diameter of the bar provided Cross-sectional area of the bar No of bars required Ast provided 19 mm2 Design of bottom reinforcement Ast,reqd Minimum steel to be provided Area of steel to be provided Diameter of the bar provided Cross-sectional area of the bar No of bars required Ast provided 981.03 1184.00 1184.00 16.00 201.06 1206.37 SAFE mm2 mm2 mm2 mm mm2 mm2 Design of shear reinforcement for Diaphragm Maximum shear force at support Nominal Shear Stress As per IRC 21-2000 permissible shear stress from table 12B Maximum shear stress 910.05 kN 1.65 Mpa % of reinforcement Permissible shear stress Shear to be carried by reinforcement 2.50 OK 0.36 0.28 755.43 Spacing of stirrups Shear stirrups required 180.00 mm 410.41 mm2 Provide 12 mm, Area of provided stirrups LVS @ MPa % MPa kN 180.00 mm spacing 452.39 mm2 SAFE Design of Side reinforcement Provide side face reinforcement Diameter of bar to be provided Cross-sectional area of the bar No of bars required in one direction Spacing of bars along web 4.00 bars of Provide 592.00 mm2 10.00 mm 78.54 mm2 4.00 265.34 mm 250 mm spacing on each face of diaphragm 10.00 mm at 20 STAAD input file for Girder Design STAAD SPACE START JOB INFORMATION ENGINEER DATE 20-Jun-14 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 0 0; 0 1.5; 0 4.5; 0 7.5; 0 10.5; 0 12; 0.5 0; 0.5 1.5; 0.5 4.5; 10 0.5 7.5; 11 0.5 10.5; 12 0.5 12; 13 1.5 0; 14 1.5 1.5; 15 1.5 4.5; 16 1.5 7.5; 17 1.5 10.5; 18 1.5 12; 19 2.5 0; 20 2.5 1.5; 21 2.5 4.5; 22 2.5 7.5; 23 2.5 10.5; 24 2.5 12; 25 3.5 0; 26 3.5 1.5; 27 3.5 4.5; 28 3.5 7.5; 29 3.5 10.5; 30 3.5 12; 31 4.5 0; 32 4.5 1.5; 33 4.5 4.5; 34 4.5 7.5; 35 4.5 10.5; 36 4.5 12; 37 5.5 0; 38 5.5 1.5; 39 5.5 4.5; 40 5.5 7.5; 41 5.5 10.5; 42 5.5 12; 43 6.5 0; 44 6.5 1.5; 45 6.5 4.5; 46 6.5 7.5; 47 6.5 10.5; 48 6.5 12; 49 7.5 0; 50 7.5 1.5; 51 7.5 4.5; 52 7.5 7.5; 53 7.5 10.5; 54 7.5 12; 55 8.5 0; 56 8.5 1.5; 57 8.5 4.5; 58 8.5 7.5; 59 8.5 10.5; 60 8.5 12; 61 9.5 0; 62 9.5 1.5; 63 9.5 4.5; 64 9.5 7.5; 65 9.5 10.5; 66 9.5 12; 67 10.5 0; 68 10.5 1.5; 69 10.5 4.5; 70 10.5 7.5; 71 10.5 10.5; 72 10.5 12; 73 11.5 0; 74 11.5 1.5; 75 11.5 4.5; 76 11.5 7.5; 77 11.5 10.5; 78 11.5 12; 79 12.5 0; 80 12.5 1.5; 81 12.5 4.5; 82 12.5 7.5; 83 12.5 10.5; 84 12.5 12; 85 13.5 0; 86 13.5 1.5; 87 13.5 4.5; 88 13.5 7.5; 89 13.5 10.5; 90 13.5 12; 91 14.5 0; 92 14.5 1.5; 93 14.5 4.5; 94 14.5 7.5; 95 14.5 10.5; 96 14.5 12; 97 15.5 0; 98 15.5 1.5; 21 99 15.5 4.5; 100 15.5 7.5; 101 15.5 10.5; 102 15.5 12; 103 16.5 0; 104 16.5 1.5; 105 16.5 4.5; 106 16.5 7.5; 107 16.5 10.5; 108 16.5 12; 109 17.5 0; 110 17.5 1.5; 111 17.5 4.5; 112 17.5 7.5; 113 17.5 10.5; 114 17.5 12; 115 18 0; 116 18 1.5; 117 18 4.5; 118 18 7.5; 119 18 10.5; 120 18 12; MEMBER INCIDENCES 1 2; 2 3; 3 4; 4 5; 5 6; 7; 8; 9; 10; 10 11; 11 12; 12 8; 13 9; 14 10; 15 10 11; 16 11 12; 17 13; 18 14; 19 15; 20 10 16; 21 11 17; 22 12 18; 23 13 14; 24 14 15; 25 15 16; 26 16 17; 27 17 18; 28 13 19; 29 14 20; 30 15 21; 31 16 22; 32 17 23; 33 18 24; 34 19 20; 35 20 21; 36 21 22; 37 22 23; 38 23 24; 39 19 25; 40 20 26; 41 21 27; 42 22 28; 43 23 29; 44 24 30; 45 25 26; 46 26 27; 47 27 28; 48 28 29; 49 29 30; 50 25 31; 51 26 32; 52 27 33; 53 28 34; 54 29 35; 55 30 36; 56 31 32; 57 32 33; 58 33 34; 59 34 35; 60 35 36; 61 31 37; 62 32 38; 63 33 39; 64 34 40; 65 35 41; 66 36 42; 67 37 38; 68 38 39; 69 39 40; 70 40 41; 71 41 42; 72 37 43; 73 38 44; 74 39 45; 75 40 46; 76 41 47; 77 42 48; 78 43 44; 79 44 45; 80 45 46; 81 46 47; 82 47 48; 83 43 49; 84 44 50; 85 45 51; 86 46 52; 87 47 53; 88 48 54; 89 49 50; 90 50 51; 91 51 52; 92 52 53; 93 53 54; 94 49 55; 95 50 56; 96 51 57; 97 52 58; 98 53 59; 99 54 60; 100 55 56; 101 56 57; 102 57 58; 103 58 59; 104 59 60; 105 55 61; 106 56 62; 107 57 63; 108 58 64; 109 59 65; 110 60 66; 111 61 62; 112 62 63; 113 63 64; 114 64 65; 115 65 66; 116 61 67; 117 62 68; 118 63 69; 119 64 70; 120 65 71; 121 66 72; 122 67 68; 123 68 69; 124 69 70; 125 70 71; 126 71 72; 127 67 73; 128 68 74; 129 69 75; 130 70 76; 131 71 77; 132 72 78; 133 73 74; 134 74 75; 135 75 76; 136 76 77; 137 77 78; 138 73 79; 139 74 80; 140 75 81; 141 76 82; 142 77 83; 143 78 84; 144 79 80; 145 80 81; 146 81 82; 147 82 83; 148 83 84; 149 79 85; 150 80 86; 151 81 87; 152 82 88; 153 83 89; 154 84 90; 155 85 86; 156 86 87; 157 87 88; 158 88 89; 159 89 90; 160 85 91; 161 86 92; 162 87 93; 163 88 94; 164 89 95; 165 90 96; 166 91 92; 167 92 93; 168 93 94; 22 169 94 95; 170 95 96; 171 91 97; 172 92 98; 173 93 99; 174 94 100; 175 95 101; 176 96 102; 177 97 98; 178 98 99; 179 99 100; 180 100 101; 181 101 102; 182 97 103; 183 98 104; 184 99 105; 185 100 106; 186 101 107; 187 102 108; 188 103 104; 189 104 105; 190 105 106; 191 106 107; 192 107 108; 193 103 109; 194 104 110; 195 105 111; 196 106 112; 197 107 113; 198 108 114; 199 109 110; 200 110 111; 201 111 112; 202 112 113; 203 113 114; 204 109 115; 205 110 116; 206 111 117; 207 112 118; 208 113 119; 209 114 120; 210 115 116; 211 116 117; 212 117 118; 213 118 119; 214 119 120; DEFINE MATERIAL START ISOTROPIC CONCRETE E 2.17185e+007 POISSON 0.17 DENSITY 23.5616 ALPHA 1e-005 DAMP 0.05 END DEFINE MATERIAL MEMBER PROPERTY AMERICAN TO 10 18 TO 21 29 TO 32 40 TO 43 172 TO 175 183 TO 186 194 TO 197 205 TO 208 PRIS AX 1.614 IX 0.01 IY 0.547 IZ 0.466 95 TO 98 106 TO 109 117 TO 120 PRIS AX 1.32 IX 0.01 IY 0.531 IZ 0.41 51 TO 54 62 TO 65 73 TO 76 84 TO 87 128 TO 131 139 TO 142 150 TO 153 161 TO 164 PRIS AX 1.467 IX 0.01 IY 0.539 IZ 0.438 TO 11 17 22 28 33 39 44 50 55 61 66 72 77 83 88 94 99 105 110 116 121 127 132 138 143 149 154 160 165 171 176 182 187 193 198 204 209 TO 213 214 PRIS YD 0.01 ZD 0.01 12 TO 16 23 TO 27 34 TO 38 45 TO 49 56 TO 60 67 TO 71 78 TO 82 89 TO 93 100 101 TO 104 111 TO 115 122 TO 126 133 TO 137 144 TO 148 155 TO 159 166 TO 170 177 TO 181 188 TO 192 199 TO 203 PRIS YD 0.23 ZD 23 CONSTANTS MATERIAL CONCRETE ALL SUPPORTS TO 11 110 TO 113 PINNED DEFINE MOVING LOAD TYPE LOAD 40 60 60 85 85 85 85 DIST 3.98 1.52 2.13 1.37 3.06 1.37 WID 1.93 TYPE LOAD 13.5 13.5 57 57 34 34 34 34 DIST 1.1 3.2 1.2 4.3 3 WID 1.8 LOAD LOADTYPE Traffic TITLE LIVE LOAD *CLASS 70R (Ecc) *0.45+1.2+2.79+0.86/2 LOAD GENERATION 40 TYPE -13.43 4.01 XINC *CLASS 70R (Girder 2) *4.5+1.93/2 LOAD GENERATION 40 TYPE -13.43 5.465 XINC *CLASS 70R + CLASS A LOAD GENERATION 40 TYPE -13.43 4.01 XINC *0.45+7.5+2.3-0.5/2=10 TYPE -18.8 10 XINC *3 CLASS A LOAD GENERATION 40 TYPE -18.48 2.65 XINC TYPE -18.48 6.15 XINC TYPE -18.48 9.65 XINC 24 LOAD 165 LOADTYPE Dead TITLE GIRDER+DECK SLAB+DIAPHRAGM MEMBER LOAD *Support girder - 25*0.92 TO 10 18 TO 21 29 TO 32 40 TO 43 172 TO 175 183 TO 186 194 TO 197 205 TO 208 UNI GY -23 *Mid-span Girder - 25*0.63 84 TO 87 95 TO 98 106 TO 109 117 TO 120 128 TO 131 UNI GY -15.75 *Intermediate Section Girder - 25*(0.92+0.63)/2 51 TO 54 62 TO 65 73 TO 76 139 TO 142 150 TO 153 161 TO 164 UNI GY -19.375 *Deck Slab - 25*3*0.23 TO 10 18 TO 21 29 TO 32 40 TO 43 51 TO 54 62 TO 65 73 TO 76 84 TO 87 95 96 TO 98 106 TO 109 117 TO 120 128 TO 131 139 TO 142 150 TO 153 161 TO 164 172 TO 175 183 TO 186 194 TO 197 205 TO 208 UNI GY -17.25 *Diaphragm - 25*0.4*(1.48-0.23) 12 TO 16 199 TO 203 UNI GY -12.5 LOAD 166 LOADTYPE Dead TITLE WEARING COAT+CRASH BARRIER MEMBER LOAD *Crash Barrier - 25*0.3 11 17 22 28 33 39 44 50 55 61 66 72 77 83 88 94 99 105 110 116 121 127 132 138 143 149 154 160 165 171 176 182 187 193 198 204 209 UNI GY -7.5 *Wearing Coat of thickness 100mm - 22*0.1*3 TO 10 18 TO 21 29 TO 32 40 TO 43 51 TO 54 62 TO 65 73 TO 76 84 TO 87 95 96 TO 98 106 TO 109 117 TO 120 128 TO 131 139 TO 142 150 TO 153 161 TO 164 172 TO 175 183 TO 186 194 TO 197 205 TO 208 UNI GY -6.6 PERFORM ANALYSIS FINISH 25 STAAD input file for Diaphragm STAAD SPACE START JOB INFORMATION ENGINEER DATE 24-Jun-14 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1.5 0; 2.5 0; 4.5 0; 7.5 0; 9.5 0; 10.5 0; 12 0; 0 0; MEMBER INCIDENCES 2 3; 3 4; 4 5; 5 6; 6 7; 2; 8; DEFINE MATERIAL START ISOTROPIC CONCRETE E 2.17185e+007 POISSON 0.17 DENSITY 23.5616 ALPHA 1e-005 DAMP 0.05 END DEFINE MATERIAL MEMBER PROPERTY AMERICAN TO PRIS YD 1.48 ZD 0.4 CONSTANTS MATERIAL CONCRETE ALL SUPPORTS PINNED LOAD LOADTYPE Dead TITLE DEAD LOAD 26 JOINT LOAD FY -67.5 JOINT LOAD FY -333.75 MEMBER LOAD TO UNI GY -12.5 JOINT LOAD FY -59.4 PERFORM ANALYSIS FINISH 27