Tai ngay!!! Ban co the xoa dong chu nay!!! WILEY END USER LICENSE AGREEMENT Go to www.wiley.com/go/eula to access Wiley's ebook EULA Internal Combustion Engines Internal Combustion Engines Applied Thermosciences Third Edition Colin R Ferguson Allan T Kirkpatrick Mechanical Engineering Department Colorado State University, USA This edition first published 2016 c 2016, John Wiley & Sons, Ltd ○ First Edition published in 2014 Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher Wiley also publishes its books in a variety of electronic formats Some content that appears in print may not be available in electronic books Designations used by companies to distinguish their products are often claimed as trademarks All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners The publisher is not associated with any product or vendor mentioned in this book Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom If professional advice or other expert assistance is required, the services of a competent professional should be sought Library of Congress Cataloging-in-Publication Data Ferguson, Colin R Internal combustion engines : applied thermosciences / Colin R Ferguson, Allan T Kirkpatrick Third edition pages cm Includes bibliographical references and index ISBN 978-1-118-53331-4 (hardback) Internal combustion engines Thermodynamics I Ferguson, Colin, R II Kirkpatrick, Allan T III Title TJ756.F47 2015 621.43 dc23 2015016357 A catalogue record for this book is available from the British Library Set in 10/12pt TimesLTStd-Roman by Thomson Digital, Noida, India 2016 Contents Preface xi Acknowledgments xiii Introduction to Internal Combustion Engines 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Introduction Historical Background Engine Cycles Engine Performance Parameters Engine Configurations 16 Examples of Internal Combustion Engines Alternative Power Plants 26 References 29 Homework 30 Heat Engine Cycles 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Introduction 32 Constant Volume Heat Addition 33 Constant Pressure Heat Addition 36 Limited Pressure Cycle 37 Miller Cycle 39 Finite Energy Release 41 Ideal Four-Stroke Process and Residual Fraction Discussion of Gas Cycle Models 62 References 63 Homework 64 54 66 Introduction 66 Thermodynamic Properties of Ideal Gas Mixtures 66 Liquid Vapor Gas Mixtures 72 Stoichiometry 76 Low-Temperature Combustion Modeling 79 General Chemical Equilibrium 84 Chemical Equilibrium using Equilibrium Constants 89 References 94 Homework 94 Fuel Air Combustion Processes 4.1 4.2 23 32 Fuel, Air, and Combustion Thermodynamics 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 97 Introduction 97 Combustion and the First Law 97 v vi Contents 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Maximum Work and the Second Law 103 Fuel Air Otto Cycle 108 Four-Stroke Fuel Air Otto Cycle 113 Homogeneous Two-Zone Finite Heat Release Cycle 116 Comparison of Fuel Air Cycles with Actual Spark Ignition Cycles Limited Pressure Fuel Air Cycle 125 Comparison of Limited Pressure Fuel Air Cycles with Actual Compression Ignition Cycles 128 References 129 Homework 129 Intake and Exhaust Flow 5.1 5.2 5.3 5.4 5.5 5.6 5.7 131 Introduction 131 Valve Flow 131 Intake and Exhaust Flow 147 Superchargers and Turbochargers 150 Effect of Ambient Conditions on Engine and Compressor Mass Flow 158 References 159 Homework 160 Fuel and Airflow in the Cylinder 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 Introduction 163 Carburetion 163 Fuel Injection Spark Ignition 166 Fuel Injection Compression Ignition 168 Large-Scale in-Cylinder Flow 174 In-Cylinder Turbulence 180 Airflow in Two-Stroke Engines 185 References 193 Homework 195 Combustion Processes in Engines 7.1 7.2 7.3 7.4 7.5 7.6 7.7 197 Introduction 197 Combustion in Spark Ignition Engines 198 Abnormal Combustion (Knock) in Spark Ignition Engines Combustion in Compression Ignition Engines 214 Low-Temperature Combustion 225 References 229 Homework 231 Emissions 8.1 8.2 8.3 8.4 8.5 163 234 Introduction 234 Nitrogen Oxides 235 Carbon Monoxide 243 Hydrocarbons 245 Particulates 249 206 123 Contents 8.6 8.7 8.8 Fuels 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 Emissions Regulation and Control References 258 Homework 259 262 Introduction 262 Hydrocarbon Chemistry 263 Refining 266 Fuel Properties 267 Gasoline Fuels 269 Alternative Fuels for Spark Ignition Engines Hydrogen 281 Diesel Fuels 282 References 286 Homework 287 10 Friction and Lubrication 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 10.13 10.14 288 318 Introduction 318 Engine Cooling Systems 319 Engine Energy Balance 320 Cylinder Heat Transfer 324 Heat Transfer Modeling 326 Heat Transfer Correlations 330 Heat Transfer in the Exhaust System Radiation Heat Transfer 339 Mass Loss or Blowby 340 References 342 Homework 344 12 Engine Testing and Control 12.1 12.2 274 Introduction 288 Friction Coefficient 288 Friction Mean Effective Pressure 291 Friction Measurements 291 Friction Modeling 294 Journal Bearing Friction 295 Piston and Ring Friction 298 Valve Train Friction 306 Accessory Friction 308 Pumping Mean Effective Pressure 310 Overall Engine Friction Mean Effective Pressure 311 Lubrication 312 References 315 Homework 316 11 Heat and Mass Transfer 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 251 Introduction 346 Instrumentation 347 346 338 vii 446 Computer Programs %5.0f %5.3f %5.2f %6.1f\n’, THETA, VOL*1000000, X, Y(1), Y(2), Y(3), Y(4)*1000, Y(5)*1000, M*1000, Y(6)*1000, Y(7)*to_ppm ); end % integrate total NOx value NOX_ppm = 0; for nn=1:NNOX; THETA = THETAS + (nn-1)/(NNOX-1)*THETAB; dxbdtheta = 0.5*sin(pi*(THETA-THETAS)/THETAB)*pi/THETAB; dxb = dxbdtheta*DTHETA; NOX_ppm = NOX_ppm + Y(6+nn)*dxb*to_ppm; end ETA = Y(4)/MNOT*(1+PHI*FS*(1-F))/PHI/FS/(1-F)/A0; IMEP = Y(4)/(pi/4*Bˆ2*S); fprintf(’ETA=%1.4f IMEP=%7.3f kPa NOx = %6.1f ppm\n’,ETA,IMEP,NOX_ppm ); if ( nargin == ) % if not called externally with custom PHI, F, and RPM parameters, % generate some plots sTitle = sprintf(’Homogenous zone, gasoline, PHI=%.2f F=%.2f RPM=%.1f\nETA=%.3f IMEP=%.2f kPa NOx=%.1f ppm ’, PHI, F, RPM, ETA, IMEP, NOX_ppm ); figure; plot( SAVE.THETA, SAVE.X, ’linewidth’,2 ); set(gca,’fontsize’,18,’linewidth’,2,’Xlim’,[-100 100]); xlabel( ’\theta’,’fontsize’,18); ylabel(’burn fraction’,’fontsize’,18); figure; plot( SAVE.THETA, SAVE.P,’linewidth’,2 ); set(gca,’fontsize’,18,’linewidth’,2,’Xlim’,[-100 100]); xlabel( ’\theta’,’fontsize’,18); ylabel(’pressure (kPa)’,’fontsize’,18); figure; plot( SAVE.THETA, SAVE.TU, ’-’,SAVE.THETA, SAVE.TB,’ ’,’linewidth’,2 ); set(gca,’fontsize’,18,’linewidth’,2,’Xlim’,[-100 100]); xlabel( ’\theta’,’fontsize’,18); ylabel( ’temperature (K)’, ’fontsize’,18); legend(’Unburned’,’Burned’, ’Location’, ’SouthEast’); figure; plot( SAVE.THETA, SAVE.NOX,’linewidth’,2 ); set(gca,’fontsize’,18,’linewidth’,2,’Xlim’,[-100 100]); xlabel(’\theta’,’fontsize’,18); ylabel(’NOx (ppm)’,’fontsize’,18); axis( [ THETAS, 110, 0, max(max(SAVE.NOX)*1.1) ] ); %legend( ’X=0’, ’X=0.25’, ’X=0.5’, ’X=0.75’, ’X=1’, ’Location’, ’SouthEast’ ); %title( sTitle ); end Computer Programs 447 function [ TB ] = tinitial( P, TU, PHI, F ) TB = 2000; [˜, HU,˜, ˜, ˜, ˜, ˜, ˜, ˜, ˜] = farg( TU, P, PHI, F, fuel_type ); for ITER=1:50, [ierr, ˜, HB,˜, ˜, ˜, ˜, CP, ˜, ˜, ˜] = ecp( TB, P, PHI, fuel_type ); if ( ierr ˜= ) fprintf(’Error in ECP(%g, %g, %g): %d\n’, TB, P, PHI, ierr ) end DELT = +(HU-HB)/CP; TB = TB + DELT; if ( abs(DELT/TB) < 0.001 ) break; end end end function [ VOL, X, EM ] = auxiliary( THETA ) VTDC = pi/4*Bˆ2*S/(R-1); % m3 VOL = VTDC*(1 + (R-1)/2*(1-cosd(THETA) + 1/EPS*(1-sqrt(1- (EPS*sind(THETA))ˆ2)))); X = 0.5*(1-cos(pi*(THETA-THETAS)/THETAB)); if ( THETA = THETAS+THETAB ) X = 1.; end EM = exp(-BLOWBY*(THETA*pi/180 + pi)/OMEGA); end function [Y] = integrate( THETA, THETAE, Y ) [TT, YY ] = ode23( @rates, [ THETA, THETAE ], Y ); for J=1:NY, Y(J) = YY(length(TT),J); end function [ YPRIME ] = rates( THETA, Y ) YPRIME = zeros(NY,1); [ VOL, X, EM ] = auxiliary( THETA ); M = EM*MNOT; DUMB = sqrt(1-(EPS*sind(THETA))ˆ2); DV = pi/8*Bˆ2*S*sind(THETA)*(1+EPS*cosd(THETA)/DUMB); AA = (DV + VOL*BLOWBY/OMEGA)/M; C1 = HEAT*(pi*Bˆ2/2 + 4*VOL/B)/OMEGA/M/1000; C0 = sqrt(X); P = Y(1); TB = Y(2); TU = Y(3); % three different computations are required depending upon the size % of the mass fraction burned 448 Computer Programs if ( X > 0.999 ) % EXPANSION [ierr,YB,HL, ˜, ˜,VB, ˜,CP, ˜,DVDT,DVDP]=ecp(TB,P,PHI,fuel_type); if ( ierr ˜= ) fprintf(’Error in ECP(%g, %g, %g): %d\n’, TB, P, PHI, ierr ); end BB = C1/CP*DVDT*TB*(1-TW/TB); CC = 0; DD = 1/CP*TB*DVDTˆ2 + DVDP; EE = 0; YPRIME(1) = (AA + BB + CC)/(DD + EE); YPRIME(2) = -C1/CP*(TB-TW) + 1/CP*DVDT*TB*YPRIME(1); YPRIME(3) = 0; elseif ( X > 0.001 ) % COMBUSTION [˜,HU, ˜, ˜,VU, ˜,CPU, ˜,DVDTU,DVDPU]=farg(TU,P,PHI,F,fuel_type); [ierr,YB,HB, ˜, ˜,VB, ˜,CPB, ˜,DVDTB,DVDPB]=ecp(TB,P,PHI,fuel_type); if ( ierr ˜= ) fprintf(’Error in ECP(%g, %g, %g): %d\n’, TB, P, PHI, ierr ); end BB = C1*(1/CPB*TB*DVDTB*C0*(1-TW/TB) + 1/CPU*TU*DVDTU*(1-C0)* (1-TW/TU)); DX = 0.5*sin( pi*(THETA-THETAS)/THETAB )*180/THETAB; CC = -(VB-VU)*DX - DVDTB*(HU-HB)/CPB*(DX-(X-Xˆ2)*BLOWBY/OMEGA); DD = X*(VBˆ2/CPB/TB*(TB/VB*DVDTB)ˆ2 + DVDPB); EE = (1-X)*(1/CPU*TU*DVDTUˆ2 + DVDPU); HL = (1-Xˆ2)*HU + Xˆ2*HB; YPRIME(1) = (AA + BB + CC)/(DD + EE); YPRIME(2) = -C1/CPB/C0*(TB-TW) + 1/CPB*TB*DVDTB*YPRIME(1) + (HU-HB)/CPB*(DX/X - (1-X)*BLOWBY/OMEGA); YPRIME(3) = -C1/CPU/(1+C0)*(TU-TW) + 1/CPU*TU*DVDTU*YPRIME(1); else % COMPRESSION [˜, HL, ˜, ˜, ˜, ˜,CP, ˜,DVDT,DVDP]=farg(TU,P,PHI,F,fuel_type); BB = C1*1/CP*TU*DVDT*(1-TW/Y(3)); CC = 0; DD = 0; EE = 1/CP*TU*DVDTˆ2 + DVDP; YPRIME(1) = ( AA + BB + CC )/(DD + EE); YPRIME(2) = 0; YPRIME(3) = -C1/CP*(Y(3)-TW) + 1/CP*Y(3)*DVDT*YPRIME(1); end % common to all cases YPRIME(4) = Y(1)*DV; YPRIME(5) = 0; if ( ˜isnan(TB) ) YPRIME(5) = YPRIME(5) + C1*M*C0*(TB-TW); Computer Programs 449 end if ( ˜isnan(TU) ) YPRIME(5) = YPRIME(5) + C1*M*(1-C0)*(TU-TW); end YPRIME(6) = BLOWBY*M/OMEGA*HL; % perform NOx integration for each element burned if ( X > 0.001 ) % COMBUSTION OR EXPANSION for k=1:NNOX, if ( THETA >= THETAS + (k-1)/(NNOX-1)*THETAB ) % convert Y(6+k) to [NO] mol/cmˆ3 from mass fraction % and then back YPRIME(6+k) = zeldovich( TB, P/100, YB, Y(6+k)/(MW_NO*VB*1000) ) *MW_NO*VB*1000/OMEGA; end end end % 1/omega is s/rad, so convert to s/deg for JJ=1:NY, YPRIME(JJ) = YPRIME(JJ)*pi/180; end end end function [ dNOdt ] = zeldovich( T, P, y, NO ) % calculate rate of NO formation d[NO]/dt given % inputs: % T [K] : gas mixture temperature, kelvin % P [bar] : cylinder pressure, bar % y [ ] : equilibrium mole fraction of constituents % NO [mol/cmˆ3] : current NOx concentration % outputs: % dNOdt [ (mol/cmˆ3) / sec ] : rate of NO formation % extended zeldovich rate constants from Heywood Table 11.1 (cmˆ3/mol-s) k1 = 7.6*10ˆ13*exp(-38000/T); k2r = 1.5*10ˆ9*T*exp(-19500/T); k3r = 2*10ˆ14*exp(-23650/T); % calculate molar concentration [mol/cmˆ3] N_V = (100000*P)/(8.314*T)*(1/100)ˆ3; N2e = y(3)*N_V; He = y(7)*N_V; Oe = y(8)*N_V; NOe = y(10)*N_V; R1 = k1*Oe*N2e; R2 = k2r*NOe*Oe; R3 = k3r*NOe*He; alpha = NO/NOe; dNOdt = 2*R1*(1-alpha*alpha)/(1+alpha*R1/(R2+R3)); 450 Computer Programs end end F.16 FRICTION.M % program to compute friction mean effective pressure % fmep units in kPa % inputs clear; N = 3000; %engine speed rpm b = 86; % bore (mm) s = 86; % stroke (mm) nc =4; % # cylinders pin=101; % intake manifold pressure (kPa) db = 56; % main bearing diameter (mm) lb = 21; % main bearing length (mm) niv = 2; % # intake valves/cyl nev = 2; % # exhaust valves/cyl div = 35; % intake valve diameter (mm); dev= 31; % exhaust valve diameter (mm); lv = 11; % valve lift (mm) mu = 100.e-3 ; % dynamic viscosity (Pa s) pa= 101; %atmospheric pressure (kPa) Up = 2.* N * s/60; % mean piston speed (mm/s) denom = nc*bˆ2*s; nb= nc+1; %# main crankshaft bearings nv = (niv+nev)*nc; % # valves (total) % friction coefficients c_cb=0.0202; % crankshaft bearing c_cs=93600; % crankshaft seals c_pb=0.0202; % piston bearings c_ps=14; % piston seals c_pr=2707; % pison ringpack c_vb=6720; % camshaft bearings c_vh=0.5; % oscillating hydrodynamic c_vm=10.7; % oscillating mixed c_vs=1.2; % seals c_vf= 207; % flat cam follower c_vr=0.0151;% roller cam follower c_1o=1.28; c_2o=0.0079; c_3o=-8.4e-7; %oil pump c_1w=0.13; c_2w=0.002; c_3w=3.e-7; %water pump c_1f=1.72; c_2f=0.00069; c_3f=1.2e-7; %fuel injection c_iv=4.12e-3; % inlet valves (kPa sˆ2/mˆ2) c_ev=c_iv; %exhaust valves (kPa sˆ2/mˆ2) c_es=0.178; % exhaust system (kPa sˆ2/mˆ2) % component fmeps %crankshaft Computer Programs f_cb=c_cb*nb*N.ˆ(0.6)*dbˆ3*lb/denom; f_cs=c_cs*db/denom; f_crank=f_cb+f_cs; %piston assembly f_pb=c_pb*nb*N.ˆ(0.6)*dbˆ3*lb/denom; % bearings f_ps=c_ps*Up.ˆ(0.5)/b; % skirt f_pr=c_pr*Up.ˆ(0.5)/(bˆ2); %ringpack f_piston=f_pb+f_ps+f_pr; %valvetrain f_cam=c_vb*nb*N.ˆ(0.6)/denom; %bearings f_vh=c_vh*nv*lvˆ(1.5)*N.ˆ(0.5)/denom; %oscill hydro f_vm=c_vm*(2+10./(5+mu.*N))*lv*nv/(nc*s); f_vs=c_vs; %seals %cam followers - choose flat or roller f_ff=c_vf*(2+10./(5+mu.*N))*nv/(nc*s); % flat %f_rf=c_nv*N/(nc*s); % or roller f_valve=f_cam+f_vh+f_vm+f_vs+f_ff; %auxiliary f_oil= c_1o + c_2o*N + c_3o*N.ˆ2; %oil pump f_wat= c_1w + c_2w*N + c_3w*N.ˆ2; %water pump f_fuel= c_1f + c_2f*N + c_3f*N.ˆ2; %fuel pump f_aux=f_oil+f_wat+f_fuel; %pumping dpis= pa-pin; dpiv=c_iv*(pin/pa.*Up/1000*bˆ2/niv/divˆ2).ˆ2; dpev=c_ev*(pin/pa.*Up/1000*bˆ2/nev/devˆ2).ˆ2; dpes=c_es*(pin/pa.*Up/1000).ˆ2; f_pump=dpis+dpiv+dpev+dpes; %total f_tot=f_crank+f_piston+f_valve+f_aux+f_pump; fprintf(’ \n fmep crankshaft (kPa)= %7.1f fprintf(’ fmep piston (kPa)= %7.1f \n’,f_crank); \n’,f_piston); fprintf(’ fmep valvetrain (kPa)= %7.1f \n’,f_valve); fprintf(’ fmep auxiliary (kPa)= \n’,f_aux); %7.1f fprintf(’ fmep pumping (kPa)= %7.1f \n’,f_pump); fprintf(’ fmep total (kPa)= %7.1f \n’,f_tot); F.17 WOSCHNIHEATTRANSFER.M function [ ] = WoschniHeatTransfer( ) % Gas cycle heat release code with Woschni heat transfer clear( ); thetas = -20; % start of heat release (deg) thetad = 40; % duration of heat release (deg) r =10; % compression ratio gamma = 1.3; % gas const Q = 20; % dimensionless total heat release 451 452 Computer Programs beta = 1.5; % dimensionless volume a = 5; % weibe parameter a n = 3; % weibe exponent n omega =200.; % engine speed rad/s c = 0; % mass loss coeff s = 0.1; % stroke (m) b = 0.1; % bore (m) T_bdc = 300; tw = 1.2; % temp at bdc (K) % dimensionless cylinder wall temp P_bdc = 100; % pressure at bdc (kPa) Up = s*omega/pi; % mean piston speed (m/s) step=1; % crankangle interval for calculation/plot NN=360/step; % number of data points theta = -180; % initial crankangle thetae = theta + step; % final crankangle in step % initialize results data structure save.theta=zeros(NN,1); save.vol=zeros(NN,1); % volume save.press=zeros(NN,1); % pressure save.work=zeros(NN,1); % work save.heatloss=zeros(NN,1); % heat loss save.mass=zeros(NN,1); % mass left save.htcoeff=zeros(NN,1); % heat transfer coeff save.heatflux=zeros(NN,1); % heat flux (W/mˆ2) fy=zeros(4,1); % vector for calulated pressure, work, heat and mass loss fy(1) = 1; % initial pressure (P/P_bdc) fy(4) = 1; % initial mass (-) %for loop for pressure and work calculation for i=1:NN, [fy, vol, ht,hflux] = integrate_ht(theta,thetae,fy); % print values % fprintf(’%7.1f %7.2f %7.2f %7.2f \n’, theta,vol,fy(1),fy(2),fy(3)); % reset to next interval theta = thetae; thetae = theta+step; save.theta(i)=theta; % put results in output vectors save.vol(i)=vol; save.press(i)=fy(1); save.work(i)=fy(2); save.heatloss(i)=fy(3); save.mass(i)=fy(4); save.htcoeff(i)=ht; save.hflux(i)=hflux; end % end of pressure and work for loop [pmax, id_max] = max(save.press(:,1)); % find max pressure thmax=save.theta(id_max); % and crank angle Computer Programs ptdc=save.press(NN/2)/pmax; w=save.work(NN,1); % w is cumulative work massloss =1- save.mass(NN,1); eta=w/Q; % thermal efficiency imep = eta*Q*(r/(r -1)); %imep/P1V1 eta_rat = eta/(1-rˆ(1-gamma)); % output overall results fprintf(’ Weibe Heat Release with Heat and Mass Loss fprintf(’ Theta_start = %5.2f fprintf(’ Theta_dur = %5.2f \n’, thetad); fprintf(’ P_max/P1 = %5.2f \n’, pmax); fprintf(’ Theta @P_max = %7.1f \n’); \n’, thetas); \n’,thmax); fprintf(’ Net Work/P1V1 = %7.2f \n’, w); fprintf(’ Heat Loss/P1V1 = %7.2f \n’, save.heatloss(NN,1)); fprintf(’ Mass Loss/m = %7.3f fprintf(’ Efficiency = %5.2f \n’,massloss ); \n’, eta); fprintf(’ Eff./Eff Otto = %5.2f \n’, eta_rat); fprintf(’ Imep/P1 = %5.2f \n’, imep); %plot results figure(); plot(save.theta,save.work,’-’,save.theta,save.heatloss,’ ’,’linewidth’,2 ) set(gca, ’Xlim’,[-180 180],’fontsize’, 18,’linewidth’,1.5); hleg1=legend(’Work’, ’Heat Loss’,’Location’,’NorthWest’); set(hleg1,’Box’, ’off’) xlabel(’Crank Angle \theta (deg)’,’fontsize’, 18) ylabel(’Cumulative Work and Heat Loss’,’fontsize’, 18) plot(save.theta,save.press,’-’,’linewidth’,2 ) set(gca, ’fontsize’, 18,’linewidth’,1.5,’Xlim’, [-180 180]); xlabel(’Crank Angle (deg)’,’fontsize’, 18) ylabel(’Pressure (bar)’,’fontsize’, 18) figure(); plot(save.theta,save.htcoeff,’-’,’linewidth’,2 ) set(gca, ’fontsize’, 18,’linewidth’,1.5,’Xlim’, [-180 180]); xlabel(’Crank Angle \theta (deg)’,’fontsize’, 18) ylabel(’Heat transfer coefficient h (W/mˆ2-K)’,’fontsize’, 18) figure(); plot(save.theta,save.hflux,’-’,’linewidth’,2 ) set(gca, ’fontsize’, 18,’linewidth’,1.5,’Xlim’, [-180 180]); xlabel(’Crank Angle \theta (deg)’,’fontsize’, 18) ylabel(’Heat flux q{"} (MW/mˆ2)’,’fontsize’, 18) function[fy,vol,ht, hflux] = integrate_ht(theta,thetae,fy) % ode23 integration of the pressure differential equation % from theta to thetae with current values of fy as initial conditions [tt, yy] = ode23(@rates, [theta thetae], fy); % put last element of yy into fy vector for j=1:4 453 454 Computer Programs fy(j) = yy(length(tt),j); end % pressure differential equation function [yprime] = rates(theta,fy) vol=(1.+ (r -1)/2.*(1-cosd(theta)))/r; dvol=(r - 1)/2.*sind(theta)/r*pi/180.; %dvol/dtheta dx=0.; if(theta>thetas) % heat release >0 dum1=(theta -thetas)/thetad; x=1-exp(-(a*dum1ˆn)); dx=(1-x)*a*n*dum1ˆ(n-1)/thetad; %dx/dthetha end P=P_bdc*fy(1); %P(theta) (kPa) T=T_bdc*fy(1)*vol; % T(theta) (K) term4=T_bdc*(r-1)*(fy(1)-volˆ(-gamma))/r; % comb vel increase U=2.28*Up + 0.00324*term4; % Woschni vel (m/s) ht = 3.26 *Pˆ(0.8)*Uˆ(0.8)*bˆ(-0.2)*Tˆ(-0.55); %Woschni ht coeff hflux=ht*T_bdc*(fy(1)*vol/fy(4) - tw)/10ˆ6; %heat flux MW/mˆ2 h = ht*T_bdc*4/(1000*P_bdc*omega*beta*b); %dimensionless ht coeff term1= -gamma*fy(1)*dvol/vol; term3= h*(1 + beta*vol)*(fy(1)*vol/fy(4) - tw)*pi/180.; term2= (gamma-1)/vol*(Q*dx - term3); yprime(1,1)= term1 + term2 - gamma*c/omega*fy(1)*pi/180; yprime(2,1)= fy(1)*dvol; yprime(3,1)= term3; yprime(4,1)= -c*fy(4)/omega*pi/180; end %end of function rates end % end of function integrate_ht end % end of function HeatReleaseHeatTransfer Index A Accessory friction, 308 Adiabatic flame temperature, 100 Air/fuel ratio definition, 76 oxygen sensor, 353 stoichiometric, 76 Alcohol, 265, 279 Alternative fuels, 274 Antoine’s equation, 75 Aromatics, 265 Atmosphere, standard, 68, 158, 402 Atomization, 163, 173 Auto-ignition, 7, 197, 215 Available energy, 99,104, 372 B Balance, 19 Bearings, 295 Benz, K., Biodiesel, 285 Blowby, 49, 340 Blowdown, 54, 138 Brake mean effective pressure (bmep), 12 Brake specific fuel consumption (bsfc), 14 C Carbon monoxide, 85, 243, 358 Carburetor, 163 Carnot, S., 32 Catalytic converter efficiency, 256 reactions, 255 Cetane index, 283 Cetane number, 219, 280, 284 Charging efficiency, 185 Chemical equilibrium, 84 Choked flow, 133,155,165 Clausius-Clapeyron equation, 75 Clerk, D., Combustion analysis, 354 Combustion diagnostics, 214 Combustion duration, 43, 207 Combustion visualization, 214 Complete expansion, 40 Compression ratio definition, 10 effects on performance, 124, 373, 383 fuel-air cycle, 108, 128 gas cycle, 35, 38, 40 Compressor map, 155 Compressors, 150 Computational fluid dynamics (CFD), 175 Controls, electronics, 366 Cooling system, 5, 22, 319 Cooperative Fuel Research (CFR) engine, 212 Crevice volume, 246 Crude oils, 262 266 Cumulative energy release fraction, 43 Cycle-to-cycle variations, 198 Cylinder area, 50 Cylinder pressure measurement, 354 Cylinder volume, 17 D Daimler, G., Delivery ratio, 190 Deposits, 246 Diesel cycle, 7, 36 Diesel engines combustion, 215 HC emissions, 248 numerical models, 225 particulate matter (PM) emissions, 249 performance, 8, 378 Diesel fuel, 83, 282 Diesel, R., Diffusion coefficient, 390 Dilution tunnel, 364 Direct injection, Discharge coefficient carburetors, 165 poppet valves, 134 ports, 188 Displacement volume, 10 Distillation, 266 Internal Combustion Engines:Applied Thermosciences, Third Edition Colin R Ferguson and Allan T Kirkpatrick c 2016 John Wiley & Sons Ltd Published 2016 by John Wiley & Sons Ltd ○ 455 456 Index Drag coefficient, 383 Droplet size, 174 Dual cycle, 38, 128 Dynamometer, 10, 347 E Efficiency compressor, 154 mechanical, 11, 372 scavenging, 191 thermal, 15, 113, 127, 322, 383 volumetric, 12, 372 Electric motors, 27 Emission regulation, 251 Emissions testing, 369 Energy balance, 320 Energy release combustion measurements, 200, 356 compression ignition engines, 222 gas cycles, 45 modeling, 41, 45, 205, 334, 356 spark ignition engines, 204 timing, 53 Engine size, 16, 379 Engine speed, 16, 124, 376 Ensemble average, 181 Enthalpy formation, 74 vaporization, 73 75 Entropy, 69, 99, 269 Equilibrium composition, 89 constants, 79, 90 Equivalence ratio CFR engine, 124 definition, 77 fuel-air cycle, 110 127 mass fraction burned, 206 measurement, 364 Ethanol, 279 Exhaust analyzers, 364 heat transfer, 338 ideal stroke, 55, 113 manifold, 189 Exhaust gas recirculation (EGR), 206, 254, 354 F Federal driving schedule, 369 Finite energy release, 41 Fischer-Tropsch reactions, 285 Flame ionization detector (FID), 360 Flame propagation, 201 Flame quenching, 246 Flammability limit, 275 Flow area, 134 Flow bench, 135, 187 Flow coefficient, 135 Flowmeters, 350 Four stroke cycle definition, exhaust stroke, 55 intake stroke, 57 P-V diagram, 56 Friction fmep definition, 291 journal bearings, 295 modeling, 294 motoring, 292 oil film, 305 piston and ring, 298 valve train, 306 Fuel-air ratio, 76, 165, 244, 372 Fuel cells, 27 Fuel injection, 166, 353 Fuels additives, 273 properties, 99, 273, 284, 397 G Gas constants, 67, 388 Gasoline, 83, 269, 271 Gas turbine, 28 Gibbs free energy, 70, 85 H HCCI engine, 226 Heat of combustion, 15, 33, 99 Heat transfer conduction, 327 convection, 327 modeling, 49, 326 measurements, 326 radiation, 339 Helmholtz free energy, 86 Helmholtz resonator, 149 Hybrid electric vehicle, 27 Hydrocarbons emissions, 245 fuel components, 263 measurement, 359 Hydrogen, 281 I Ideal gas, 66, 397 Ignition, 7, 198, 215 Ignition delay compression ignition, 220 Index spark ignition, 207 Indicated mean effective pressure (imep) definition, 12 finite energy release model, 47 fuel-air-cycle, 109, 113, 127 Miller cycle, 41 Otto cycle, 35 Indicated specific fuel consumption (ISFC), 14 Indirect injection (IDI), 7, 376, 382 Intake manifold, 147,150 Intake stroke, 57 Internal energy, 67 Isentropic processes, 33, 36, 101, 133 K Knock measurements, 206, 368 modeling, 210 457 Mixture mass fraction, 67 Molecular mass, 67, 78 Mole fraction, 67, 389 Motoring mean effective pressure (mmep), 292 N Naphthenes, 264 Natural gas, 277 Nitrogen oxides chemical reactions, 85, 235 measurement, 361, 382 rate constants, 236 Nitromethane, 83 Non-methane organic gases (NMOG), 245 Nusselt number, 331, 338 L Lagrange optimization, 85 Laminar flame speed, 201 Laser Dopper Velocimetry (LDV), 174 Lean NOx trap, 257 Lenior, J., Limited pressure cycle, 38, 125 Low temperature combustion, 225 Lubrication, 312 O Octane combustion, 87 number, 5, 212, 280 properties, 101 requirement, 270 Oil, 262, 312 Oil film, 289, 305 Olefins, 264 Otto cycle, 6, 33 Otto, N., Oxygen sensor, 362 M Mach index, 140 Mach number, 131 Mass blowby, 49 Mass fraction burned, 43, 119 Maximum work, 103 MBT timing, 381 Mean effective pressure accessory, 291 brake, 12, 158 definitions, 11 friction, 12, 291, 311 indicated, 12, 47, 109, 113, 127 motoring, 292, 380 pumping, 59, 113, 310 Methane, 83, 101 Methane number, 275 Methanol, 83, 101, 279 Microscales integral, 182 Kolmogorov, 182 Taylor, 182 Midgley, T., 274 Mie scattering, 214 Miller cycle, 39 P Paraffins, 263 Particle image velocimetry (PIV), 175 Particulates, 249, 363 Part-load performance, 376 PCCI combustion, 227 Penetration layer, 328 Performance maps, 376 Petrov’s equation, 297 Physical constants, 402 Piston acceleration, 19 force balance, 300 friction, 298 side thrust, 300 skirt, 298 temperature, 329 velocity, 18 wrist pin offset, 300 Piston rings, 298 Piston speed effect on turbulence, 181 geometric similarity, 16 instantaneous, 18 mean, 10, 376 458 Index Poppet valve, 20, 132, 307 Power brake, 10, 372 friction, 11 indicated, 10 road load, 383 Prechamber, 179 Pressure transducers, 354 Propane, 276 Pumping work, 310 Purity, 185 Q Quality, 76, 411 Quenching, 246 R Radial engine, 17 Rapid compression machine, 209 Rayleigh scattering, 215 RCCI combustion, 228 Reformulated gasoline (RFG), 272 Residual fraction fuel-air cycle, 113, 116 gas cycle, 81 measurement, 365 two stroke, 190 valve timing, 147 Reversion, 341 Reynolds equation, 304 Reynolds number, 173, 180, 331 Ricardo, H., Rings, 298 Roots blower, 150 S Sampling valve, 366 Saturation vapor pressure, 72 Scavenging analysis, 191 configurations, 186 definition, efficiency, 190 ratio, 190 Second law, 103, 107 Selective catalytic reduction (SCR), 257 Short circuiting, 9, 190 Smoke limit, 249 Soot, 249 Spark ignition cycles, emissions, 246 performance, 123 Specific fuel consumption, 14, 374 Specific heat air, 387 ideal gas mixtures, 68 71 motor fuels, 268 Speed of sound, 133, 388 Spray penetration, 173 Squish, 180 Stagnation pressure, 132 Steam engine, 2, 29 Stoichiometry, 76 Stribeck variable, 289 Stroke, Sulphur, 273 Superchargers, 20, 150 Swirl, 175 T Temperature cylinder head, 324 piston, 324, 330 Thermal conductivity, 387 Thermal efficiency Diesel cycle, 36 finite energy release, 46, 120 first law, 15 limited pressure, 38, 127 Miller cycle, 41 Otto cycle, 35 second law, 107 Timing CFR engine, 124 effect on NOx, 243, 254 spark, 43, 199, 381 valve, 143 Torque, 10 Total hydrocarbons (THC), 245 Trapped air-fuel ratio, 189 Trapping efficiency, 190, 373 Tumble, 175 Tuning, 148 Turbocharger, 20, 150 Turbulence, 5, 180, 254 Turbulence models, 184 Turbulent flame regimes, 202 Two-stroke engines, 8, 185, 315 U Ultra low sulfur diesel (ULSD), 283 Unit conversions, 401 V Valve choked flow, 133 curtain area, 134 Index discharge coefficient, 134 overlap, 43 poppet, 20, 136 timing, 143 Valve train, 306 Viscosity air, 387 combustion gas, 331, 328 diesel fuel, 284 oil, 314 Volatility, 270 Volume, 10, 17, 334,379 Volumetric efficiency definition, 12 fuel-air cycle, 116 gas cycle, 58 speed effect, 12, 146, 149 valve effect, 140, 144 W Water-gas reaction, 79 Weber number, 173 Wiebe function, 43 Woschni correlation, 333 Z Zeldovich mechanism, 235 459