1. Trang chủ
  2. » Giáo Dục - Đào Tạo

The impact of technological change on income inequality in selected asian countries

55 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 55
Dung lượng 857,2 KB

Nội dung

VIETNAM NATIONAL UNIVERSITY, HANOI VIETNAM – JAPAN UNIVERSITY NGUYEN THANH BINH THE IMPACT OF TECHNOLOGICAL CHANGE ON INCOME INEQUALITY IN SELECTED ASIAN COUNTRIES MASTER THESIS PUBLIC POLICY VIETNAM NATIONAL UNIVERSITY, HANOI VIETNAM – JAPAN UNIVERSITY NGUYEN THANH BINH THE IMPACT OF TECHNOLOGICAL CHANGE ON INCOME INEQUALITY IN SELECTED ASIAN COUNTRIES MAJOR: PUBLIC POLICY CODE: 8340402.01 RESEARCH SUPERVISOR: Dr VU HOANG LINH Hanoi, 2022 COMMITMENT I assure that the thesis title "The impact of technological change on income inequality in selected Asian countries" is my personal research under the supervision of Dr Vu Hoang Linh The data used in the thesis is truthful, and the quantitative analysis and conclusions of the thesis were not public in any other research The source of citation for this thesis is fully stated I am able and willing to take responsibility for my thesis Hanoi, June 2nd, 2022 Author Binh Nguyen Thanh Binh ACKNOWLEDGEMENT While writing my master thesis, I get much valuable encouragement, guidance, and support that help me complete and attain knowledge and wonderful experiences With all my respect and gratitude, I would like to first express my sincere appreciation to my supervisor, Dr Vu Hoang Linh – Lecturer in the Master of Public Policy Program, for his enthusiastic instruction throughout my research process His insightful advice, scientific knowledge, and support have inspired me and helped me improve my research Secondly, I would like to express my gratitude to Dr Nguyen Thuy Anh, who has guided me from my day in the bachelor's program in the University of Economic and Business - Vietnam National University I also would like to show my appreciation to all of my Vietnamese and Japanese professors, including Dr Dang Quang Vinh, Prof Fujimoto Koji, Prof Okamoto Naohisa, and Prof Naka Shigeto for their valuable knowledge I would also like to thank Ms Pham Thi Lan Huong and Ms Nguyen Thi Huong - Program Assistant of the Master's Program in Public Policy, for their kind support during the program Finally, I would like to thank my friend at Vietnam - Japan University for giving me many memorable experiences TABLE OF CONTENTS LIST OF TABLES i CHAPTER I INTRODUCTION CHAPTER II LITERATURE REVIEW CHAPTER III THEORETICAL FRAMEWORK 11 3.1 Income inequality 11 3.1.1 Definition 11 3.1.2 Measurement 11 3.1.3 Adverse effects of income inequality 11 3.2 Technological changes 13 3.2.1 Definition 13 3.2.2 Measurement 13 3.2.3 Effect of technological change on the economy 13 3.2.4 Effects of technology change on income gap 15 3.3 Other factors affect income inequality 17 3.3.1 Education 17 3.3.2 Globalization 18 CHAPTER IV THE IMPACT OF TECHNOLOGICAL CHANGE ON INCOME INEQUALITY 20 4.1 Data and empirical methodology 20 4.1.1 The model 20 4.1.2 Data 21 4.2 Empirical result 24 4.3 Robustness 26 CHAPTER V POLICY RECOMMENDATION 29 5.1 Increase national technology capability 29 5.1.1 Improving the accessibility and capability of technology 29 5.1.2 Guiding technological changes 31 5.1.3 Preparing for the technological changes 31 5.2 Develop education system 32 5.3 Take advantage of globalization 32 CONCLUSION 34 REFERENCE 35 APPENDIX 40 LIST OF TABLES Table 4.1 Fixed effect regression result 24 Table 4.2 GLS random effect regression result 27 Table 4.3 ML random effect regression result 28 Table A1: The data analysis Error! defined i used Bookmark for not CHAPTER I INTRODUCTION Research background Technology is one of the drivers of economic growth and helps improve the quality of life (Andersson, 2017; Zygmunt, 2017) Technological development has helped raise the income and reduce the number of people living in absolute poverty in developing countries (World Bank, 2008) With globalization, we would expect a rapid technological changing pace and a higher impact of technological change on social-economic situations Although technological change is essential for growth and development, the distribution effect that technology change cause is debatable Researchers have tried to identify the relationship between technological advancement and the income inequality in both developed countries (e.g., Antonelli & Scellato, 2019; Blum, 2008; Freeman, 2011; Van Reenen, 2011) and developing countries (e.g., Antonelli & Gehringer, 2017; Gravina & Lanzafame, 2021; Jaumotte et al., 2013) Asia has been one of the fastest-growing regions in the world in recent years (IMF, 2021) Technological progress help Asian countries increase growth by improving productivity and creating new jobs (Sedik, 2018) However, it could also be observed that income inequality has risen in most Asian countries (ADB, 2013) Understanding the cause of inequality in Asia is crucial for the sustainable development of Asian countries Without proper control over inequality, it could cause harm to the development of the country of the region as a whole High inequality could lower the impact of economic growth on reducing poverty, negatively impacts the growth rate and harms social, and political stability (Cornia & Court, 2001; Zhuang, 2018; UN, 2020) This paper will explore the impact of technological change on income inequality in selected Asian countries in the 21st century It will first examine the impact of technological changes on income inequality in different provinces of Vietnam to see how each province reacts to technology changes From the situations in different provinces, the paper will provide recommendations to limit the negative impact of technological progress on income inequality in Vietnam Problem statement The impact of technological change on income inequality, in general, is debatable The speed of technological change could have both positive (Antonelli & Gehringer, 2017) and negative (Gravina & Lanzafame, 2021; Jaumotte et al., 2013) impacts on reducing income inequality Without proper control over income inequality, it could harm development (Cornia & Court, 2001; Ostry, Berg, & Tsangarides, 2014; Berg & Ostry, 2011; Oishi, Kesebir & Diener, 2011) However, few studies focus on analyzing the effect of technological change on income inequality in Asia Understanding the impact of technological change on inequality in Asia countries provides a better understanding of technological change in Asia It contributes to a better understanding of its impact in general The Government could use this knowledge to devise a better development strategy to archive sustainable development Research purpose This thesis aims to evaluate the impact of technological change in 22 middle-income Asian countries From the evaluation, the research aims to understand the cause of income inequality better and propose a suitable policy to help narrow the income gap in these countries Research question This master thesis aims to answer two main questions: Does technological change widen or narrow the income gap in Asian countries in recent years? How much does technological change affect income inequality? Research scope and time The research will focus on the period from 2011 to 2019 in 22 developing Asian countries, including Azerbaijan, Bahrain, Bangladesh, Cambodia, China, India, Indonesia, Israel, Kazakhstan, Kuwait, Kyrgyz Republic, Lebanon, Malaysia, Mongolia, Pakistan, Philippines, Qatar, Russian Federation, Tajikistan, Thailand, Turkey, Vietnam Research significance This thesis will overview the impact of technological changes on income inequality in selected Asian countries from 2011 to 2019 After viewing the overall impact of technological changes on income inequality, this thesis will further analyze the effect of technology on income inequality, especially its effects on Asian countries in recent years According to the analyzed result, the paper offers suggestions to reduce income inequality in Asia Finally, this research will contribute an original research focusing on the impact of technological change in middle-income Asian countries Structure of research This thesis is organized as follows: Chapter I: Introduction Chapter II: Literature review Chapter III: Theoretical framework Chapter IV: The impact of technological change on income inequality Chapter V: Policy recommendation Chapter VI: Conclusion CONCLUSION This thesis aims to evaluate the impact of technological change in 22 middle-income countries in Asia The research used fixed effect panel regression with robust standard errors to analyze the impact of technological change The model includes inequality as a dependent variable, and the independent variable is technological changes, education, and globalization Other control variables such as government spending, education, GDP per capita and corruption were also used The result indicates that technological change in Asian countries from 2011 to 2019 helped reduce the income gap This result could be due to current technology creating opportunities for labor to increase or ensure their income Financial openness and government spending also help reduce income inequality However, FDI, education and trade openness increase income inequality Also, due to the speed of technology implementation and the time needed for the market to adjust accordingly, variables have no statistical significance The government could maintain the positive effects of technological change on income inequality through suitable policies These policies should aim to improve the accessibility and capability of technology, guide technological changes, and prepare for technological changes Due to limitations on data and difficulties in analyzing the different characteristics of different countries, the model could not thoroughly analyze the effect of technological change on income inequality Future research could add more control variables to analyze the effect of technological change on income inequality or focus on some or one country with a specific characteristic 34 REFERENCE Acemoglu, Daron, and David Autor "Skills, tasks and technologies: Implications for employment and earnings." Handbook of labor economics Vol Elsevier, 2011 1043-1171 Alderson, A S., & Nielsen, F (2002) Globalization and the great U-turn: Income inequality trends in 16 OECD countries American Journal of Sociology, 107(5), 12441299 Alesina, A., & Perotti, R (1996) Income distribution, political instability, and investment European economic review, 40(6), 1203-1228 Allegretto, S., 2011 The state of working America'swealth (Briefing Paper No 292) Washington, DC:Economic Policy Institute Andersson, M., & Stone, T A (2017) Global sourcing and technical efficiency–a firmlevel study on the ICT industry in Sweden Journal of Business Economics and Management, 18(5), 877-896 Antonelli, C., & Gehringer, A (2017) Technological change, rent and income inequalities: A Schumpeterian approach Technological Forecasting and Social Change, 115, 85-98 Asian Development Bank (2012) Asian Development Outlook 2012: Confronting Rising Inequality in Asia Asian Development Bank Autor, D H., & Dorn, D (2009) Inequality and specialization: the growth of low-skill service jobs in the United States NBER Working Paper Series, 15150 Barış, S (2019) The impact of globalization on external debts: Evidence from developing countries In Global challenges in public finance and international relations (pp 23-48) IGI Global 10 Battistón, D., García-Domench, C., & Gasparini, L (2014) Could an increase in education raise income inequality?: evidence for Latin America Latin American journal of economics, 51(1), 1-39 35 11 Berman, E., & Machin, S (2000) Skill-biased technology transfer aroundthe world.Oxford Review of Economic Policy, 16(3), 12–22 12 Bertola, G (1991) Factor shares and savings in endogenous growth 13 Bourguignon, F (2003) The growth elasticity of poverty reduction: explaining heterogeneity across countries and time periods Inequality and growth: Theory and policy implications, 1(1) 14 Cabraal, A., Ward, W A., Bogach, V S., & Jain, A (2021) Living in the Light 15 Cheng, O (2018) Inclusive growth and e-commerce: China's experience 16 Chien, T., & Hu, J L (2008) Renewable energy: An efficient mechanism to improve GDP Energy policy, 36(8), 3045-3052 17 Claessens, S., & Perotti, E (2007) Finance and inequality: Channels and evidence Journal of comparative Economics, 35(4), 748-773 18 Cobham, A., & Sumner, A (2013) Is it all about the tails? The Palma measure of income inequality Center for Global Development working paper, (343) 19 Cornia, G A (Ed.) (2004) Inequality, growth, and poverty in an era of liberalization and globalization OUP Oxford 20 Cornia, G A., & Kiiski, S (2001) Trends in income distribution in the post-World War II period: Evidence and interpretation 21 Eicher, T S., & Garcıa-Penalosa, C (2001) Inequality and growth: the dual role of human capital in development Journal of Development Economics, 66(1), 173-197 22 Galor, O., & Zeira, J (1993) Income distribution and macroeconomics The review of economic studies, 60(1), 35-52 23 Galor, O., & Moav, O (2004) From physical to human capital accumulation: Inequality and the process of development The Review of Economic Studies, 71(4), 1001-1026 24 Hassler, J., Rodríguez Mora, J V., & Zeira, J (2007) Inequality and mobility Journal of Economic Growth, 12(3), 235-259 25 James, C (2013) Global Status of Commercialized Biotech/GM Crops: 2013: ISAAA Brief No 46 International Service for the Acquisition of Agri-biotech Applications (ISAAA).\ 36 26 Jaumotte, F., Lall, S., & Papageorgiou, C (2013) Rising income inequality: technology, or trade and financial globalization? IMF economic review, 61(2), 271-309 27 Keefer, P., & Knack, S (2002) Polarization, politics and property rights: Links between inequality and growth Public choice, 111(1), 127-154 28 Keynes J M (1963), Essays in Persuasion, W.W Norton & Co., New York, pp 358373 29 Khan, N., Ismail, S., Wali, A., Kazim, R., & Azam, T (2020) The influence of information communication technology development on income inequality Artech J Curr Bus Financ Aff, 2, 11-18 30 Krueger, A O (1974) The political economy of the rent-seeking society The American economic review, 64(3), 291-303 31 Kumhof, M., Rancière, R., & Winant, P (2015) Inequality, leverage, and crises American Economic Review, 105(3), 1217-45 32 Lagarda, G., Linares, J., & Gallagher, K P (2017) Capital openness and income inequality: smooth sailing or troubled waters? 33 Lazear, E., and S Rosen 1981 "Rank-Order Tournaments as Optimum Labor Contracts." Journal of Political Economy 89 (5): 841–64 34 Legovini, A., Bouillon, C., & Lustig, N (2001) Can education explain income inequality changes in Mexico Inter-American Development Bank (IADB) 35 Lim, G C., & McNelis, P D (2014) Income inequality, trade and financial openness 36 Marx, K., 2010 A contribution to the critique of political economy In Marx today (pp 91-94) PalgraveMacmillan, New York 37 Massa, I (2015) Technological change in developing countries: Trade-offs between economic, social, and environmental sustainability United Nations UniversityMaastricht Economic and Social Research Institute on Innovation and Technology (MERIT) 38 Milanovic (2005): Worlds Apart: Measuring International and Global Inequality Princeton, NJ: Princeton University Press 37 39 Mills, M (2009) Globalization and inequality European sociological review, 25(1), 18 40 Mills, M (2009) Globalization and inequality European sociological review, 25(1), 18 41 Mnif, S (2016) Bilateral relationship between technological changes and income inequality in developing countries Atlantic Review of Economics: Revista Atlántica de Economía, 1(1), 42 Persson, T., & Tabellini, G (1991) Is inequality harmful for growth? Theory and evidence 43 Ravallion, M (2004) Pro-poor growth: A primer 44 Rip, A., & Kemp, R (1998) Technological change Human choice and climate change, 2(2), 327-399 45 Sedik, T S (2018) Asia's digital revolution Finance & Development, 55(003) 46 Seo, S N (2018) Breakthrough technologies: technological innovations as an alternative global warming solution The Behavioral Economics of Climate Change, 139-183 47 Stiglitz, J 2012 The Price of Inequality: How Today's Divided Society Endangers Our Future New York: W.W Norton 48 Untari, R., Priyarsono, D S., & Novianti, T (2019) Impact of information and communication technology (ICT) infrastructure on economic growth and income inequality in Indonesia International Journal of Scientific Research in Science, Engineering and Technology, 6(1), 109-116 49 Van Reenen, J (2011) Wage inequality, technology and trade: 21st century evidence Labour economics, 18(6), 730-741 50 Welch, F (1970) Education in production Journal of political economy, 78(1), 35-59 51 Włodarczyk, J (2017) Innovations and income inequalities–a comparative study Journal of international studies, 10(4), 166-178 52 World Bank (2008) Global Economic Prospects 2008: Technology Diffusion in the Developing World 38 53 Yu, N (2014) The Measurement of Financial Openness: From The Perspective of G20 Countries Journal of Chinese Economics, 2(2), 59-72 54 Zhuang, J (2018) The recent trend of income inequality in Asia and how policy should respond G24 Working Paper 55 Zygmunt, A (2017) Innovation activities of Polish firms Multivariate analysis of the moderate innovator countries Oeconomia Copernicana, 8(4), 505-521 39 APPENDIX Table A1: The data used for analysis Country Armenia Armenia Armenia Armenia Armenia Armenia Armenia Armenia Armenia Azerbaijan Azerbaijan Azerbaijan Azerbaijan Azerbaijan Azerbaijan Azerbaijan Azerbaijan Azerbaijan Bahrain Bahrain Bahrain Bahrain Bahrain Bahrain Bahrain Bahrain Bahrain Bangladesh Bangladesh Bangladesh Bangladesh Bangladesh Bangladesh Bangladesh Bangladesh Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 Inequality Ratio 1.9614 1.962226 2.039453 2.157582 2.304783 2.354708 2.654144 2.681845 2.190939 1.968048 2.057949 1.991453 1.991453 1.914047 1.803987 1.925579 1.925579 1.925579 5.547151 5.603159 5.665343 5.723553 5.789157 5.789157 5.789157 5.789157 5.789157 2.694666 2.669104 2.640436 2.594255 2.525882 2.509666 2.511723 2.511723 GDP / Government Tech capita spending index 3098.74 11.91 15.3 3312.98 10.91 22.2 3406.54 11.94 22.2 3511.23 12.09 26 3607.29 13.11 50.2 3601.47 13.45 51.8 3860.22 12.32 49.9 4051.38 11.49 51.2 4350.47 12.56 60.1 5152.66 10.13 22.8 5194.74 10.53 27 5425.91 10.28 29.1 5505.99 10.89 34.7 5500.31 12.41 47.8 5270.55 12.83 48.6 5229.53 11.34 65.2 5262.18 10.47 64.4 5348.27 11.12 65.9 1024.02 13.84 58.8 1078.29 15.44 62.9 1129.99 15.55 66.1 1184.86 16.13 68 1248.45 17.69 81 1322.69 17.11 82.4 1403.86 16.63 77.8 1498.39 16.29 78.5 1603.95 15.69 78.8 1024.02 5.1 13.6 1078.29 5.04 18.2 1129.99 5.12 18.2 1184.86 5.34 18.8 1248.45 5.4 25.6 1322.69 5.89 27 1403.86 39 1498.39 6.36 39.9 40 Edu 55.1 54 56.8 28.4 26.4 26 28.9 26.3 26.9 50.9 45.5 41.6 29.3 31.2 32.2 18 21.7 21.1 67.9 54.6 33.5 40.7 44.6 42.8 42.4 42 40.5 30.2 20.8 18.6 20.6 20.7 17 16.1 18.8 Bangladesh Cambodia Cambodia Cambodia Cambodia Cambodia Cambodia Cambodia Cambodia Cambodia China China China China China China China China China Cyprus Cyprus Cyprus Cyprus Cyprus Cyprus Cyprus Cyprus Cyprus Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia India India India India 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2.511723 3.665391 3.425844 3.655713 3.383164 3.372194 3.379986 3.372194 3.354978 3.354978 3.059617 2.867263 3.018532 2.88943 2.901114 2.901114 2.901114 2.901114 2.901114 2.023549 2.070477 2.4173 2.095506 2.112628 1.91016 1.794042 1.935756 1.89765 3.871473 3.219972 3.918384 3.169722 3.237042 3.502542 3.563822 3.502171 3.527338 4.018208 4.162704 4.20239 4.351104 1603.95 940.11 992.55 1048.13 1104.75 1162.9 1224.22 1289.99 1365.83 1441.18 6152.69 6591.65 7056.41 7532.77 8016.43 8516.51 9053.21 9619.19 10155.42 25466.11 24216.53 22682.27 22513.78 23408.34 24805.2 26013.83 27161.4 28211.06 3357 3597.2 3738.71 3902.57 4014.19 4128.39 4327.73 4539.09 4773.42 1292.82 1346.68 1415.83 1503.42 41 6.27 6.02 5.78 5.61 5.49 5.4 5.21 5.12 4.93 4.81 15.24 15.76 15.88 15.82 16.22 16.36 16.32 16.54 16.77 19.09 18.81 18.45 16.79 16.35 15.25 14.82 14.58 16.15 13.73 13.62 14.02 14.27 14.29 15.31 13.85 13.21 13.11 11.08 10.68 10.3 10.44 53.3 11.2 11.8 12.7 13.6 19.9 20.6 18.7 19.8 29.5 28.4 32.5 32.9 36.1 51.6 54.1 64.6 66.7 74.5 46 43.3 41.2 42.7 47.8 49.5 57.7 65.2 79.9 19.5 33.7 36.8 40 51.1 52.8 55.7 56.8 79.9 16.3 24.7 25.6 25.9 15.9 28.6 24.9 26.3 28.6 30.2 28 24.6 19.7 17.8 59.9 52.2 68.7 71.3 70.8 72.4 69.6 63.9 63.4 69.6 64.5 71.9 58.2 58.7 63.1 60.2 59.2 63.4 58.8 45.9 42 36.5 38.4 39.9 39.1 50.5 63.4 32.3 24.6 27.6 24.2 India India India India India Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Iran, Islamic Rep Iran, Islamic Rep Iran, Islamic Rep Iran, Islamic Rep Iran, Islamic Rep Iran, Islamic Rep Iran, Islamic Rep Iran, Islamic Rep Iran, Islamic Rep Israel Israel Israel Israel Israel Israel Israel Israel Israel Japan Japan Japan Japan Japan Japan Japan Japan Japan 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 4.351104 4.351104 4.351104 4.351104 4.351104 3.23699 3.086957 2.955688 2.960186 3.137415 2.936382 2.804447 3.874092 3.874092 3.796712 3.568781 3.335139 3.487448 3.545518 3.575758 3.714493 3.978113 3.978113 4.525997 4.449612 4.166118 3.925809 3.853468 3.786595 3.786595 3.786595 3.786595 2.659334 2.660725 2.682388 2.675805 2.694611 2.682388 2.675209 2.675209 2.675209 1605.61 1719.32 1816.73 1915.44 1972.76 2849.35 2980.61 3104.35 3217.32 3331.7 3456.93 3589.72 3732.87 3877.38 5409.2 4946.54 4876.12 5035.82 4904.33 5486.41 5614.12 5203.17 4785.03 33678.13 33995.43 34960.94 35710.89 35808.44 36680.32 37550.73 38301.45 38995.23 33011.13 33518.44 34239.89 34386.91 34960.64 35264.81 35914.64 36188.62 36362.36 42 10.43 10.31 10.77 10.79 11.23 50.18 49.58 48.64 48.08 41.94 37.42 39.36 43.07 37.45 9.62 9.46 9.24 10.28 12.7 13.32 13.43 12.25 11.61 22.39 22.66 22.61 22.55 22.4 22.3 22.4 22.75 22.49 19.89 19.96 19.85 19.93 19.62 19.66 19.41 19.58 19.82 38.6 39.2 49.2 50.8 62.5 16.2 27.2 28.9 30.8 31.7 32.4 35.6 38.5 53.7 20.4 29.5 32.9 31.4 34 37 35.9 39.1 59.6 54.4 76.1 74.6 77.2 78 77.3 78.1 81.1 80.6 68.8 75.5 74.4 78.1 88.1 89.7 88.8 88.9 90.3 26.8 26 26.7 27.2 28 46.1 48.6 40 30.1 32.9 32.9 33.5 33.3 33.9 44.1 45.5 45.5 35.6 35.6 39.3 38.6 37.5 41 68 61.8 60.5 49.7 50.3 53.3 54 53.2 55.6 64.8 56.6 66.7 50.8 51.6 53.4 53.8 51.2 57.3 Jordan Jordan Jordan Jordan Jordan Jordan Jordan Jordan Jordan Kazakhstan Kazakhstan Kazakhstan Kazakhstan Kazakhstan Kazakhstan Kazakhstan Kazakhstan Kazakhstan Korea, Rep Korea, Rep Korea, Rep Korea, Rep Korea, Rep Korea, Rep Korea, Rep Korea, Rep Korea, Rep Kuwait Kuwait Kuwait Kuwait Kuwait Kuwait Kuwait Kuwait Kuwait Kyrgyz Republic Kyrgyz Republic Kyrgyz Republic Kyrgyz Republic Kyrgyz Republic 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 3.868986 3.69008 3.508139 3.508139 3.508139 3.508139 3.508139 3.508139 3.508139 2.354034 2.416322 2.397541 2.193923 1.949511 2.51353 2.554612 2.599633 2.599633 2.958122 2.908748 2.862477 2.840839 2.889166 2.935179 2.950727 2.940139 2.895885 4.863921 4.766051 4.653747 4.653747 4.653747 4.653747 4.653747 4.653747 4.653747 2.090715 2.022977 2.056323 1.871436 2.09806 4521.41 4386.75 4274.55 4221.09 4164.11 4119.25 4105.72 4109.75 4133.55 9506.73 9823.69 10264.3 10539.04 10510.77 10476.35 10758.52 11053.36 11402.76 26186.9 26675.44 27394.65 28094.92 28732.23 29461.78 30307.4 31040.66 31674.31 33166.92 33455.24 32136.13 30857.16 29869.55 29801.24 27702.19 27496.85 27156.48 1011.32 993.74 1080.55 1101.71 1121.08 43 20.06 19.11 18.26 18.22 17.82 17.25 17.36 17.06 17.03 10.48 11.52 10.17 10.69 11.63 11.63 10.54 8.32 9.13 14.37 14.69 14.98 15.23 15.08 15.24 15.42 16.05 17.08 14.88 15.06 16.39 17.76 24.19 25.71 24.42 23.05 25.22 18.23 20.11 18.45 17.47 17.76 29.4 27 29.2 29.6 44 44.9 46.1 52.3 54.2 33.8 58.4 65.8 69.1 65.7 66.5 65.8 67.1 76.2 81 90.2 87.3 91.3 92.4 92.9 91.6 91.6 94 30.8 33.6 38.3 38.3 50.3 58.5 66.3 62.7 73.7 33.8 25.9 25.9 35.7 31.3 63.2 60.9 60.7 35.5 31.7 30.7 32.3 35.9 37.3 58.2 51.6 54.6 49.8 50.9 43 43.4 43.4 44.3 64.9 58.2 59 54.4 53.9 55.6 55.6 57.4 60.8 61.1 55.4 54.2 45.1 45.6 44.5 48 46.7 48.2 58.2 50.1 48.7 54.8 55.5 Kyrgyz Republic Kyrgyz Republic Kyrgyz Republic Kyrgyz Republic Lebanon Lebanon Lebanon Lebanon Lebanon Lebanon Lebanon Lebanon Lebanon Malaysia Malaysia Malaysia Malaysia Malaysia Malaysia Malaysia Malaysia Malaysia Mongolia Mongolia Mongolia Mongolia Mongolia Mongolia Mongolia Mongolia Mongolia Nepal Nepal Nepal Nepal Nepal Nepal Nepal Nepal Nepal Oman 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2.010438 2.196497 2.275014 2.624851 5.515362 5.726069 5.453659 5.41561 5.41561 5.41561 5.41561 5.41561 5.41561 2.833881 2.716848 2.51307 2.327746 2.327746 2.327746 2.327746 2.327746 2.327746 3.170629 3.498494 3.220255 3.288984 3.055177 3.038723 3.025119 3.068681 2.968414 2.649721 2.637206 2.619077 2.581098 2.52012 2.51199 2.514697 2.514697 2.514697 6.40935 1146.1 1177.44 1197.61 1226.82 8773.74 8451.41 8216.5 7950.17 7663.92 7574.6 7516.19 7345.13 6823.1 8550.15 8888.7 9179.37 9601.18 9955.24 10258.04 10707.75 11075.58 11414.58 3028.16 3335.79 3650.6 3860.33 3875.32 3858.52 4000.84 4233.97 4394.99 755.91 790.99 821.07 870.78 901.75 897.4 964.9 1021.33 1069.79 19868.12 44 17.43 17.13 17.17 16.4 12.57 13.66 12.92 12.74 12.5 12.92 13.17 15.23 16.23 13.27 13.84 13.72 13.33 13.09 12.56 12.19 11.97 11.68 12.26 13.53 13.46 13.02 14.87 15.96 13.93 12.69 13.11 8.4 7.9 7.53 8.81 7.93 8.52 8.06 8.12 15.82 36.2 41.8 44.1 55 23.1 32.8 39.2 43.8 43.2 46.5 55.4 58 53 44.2 51.9 54.3 55.3 54.5 58.6 66.4 67.6 79.4 25.5 41 42.7 44 48.7 52.9 52.6 52.3 55.6 57.1 58 58.7 64.1 52.6 40.8 39.2 32.1 35.7 31.9 28.8 26.7 26.5 55 49.6 47.8 42.2 42.3 49.5 43.9 44.2 46.1 57 48.6 53.3 45.7 45.6 45.8 45.5 45.7 41.9 12.8 13 15.7 20.3 21.4 34 36.1 53.6 26.3 24.6 30.4 31.1 31.4 34.5 29.5 27.5 32.3 52.9 Oman Oman Oman Oman Oman Oman Oman Oman Pakistan Pakistan Pakistan Pakistan Pakistan Pakistan Pakistan Pakistan Pakistan Philippines Philippines Philippines Philippines Philippines Philippines Philippines Philippines Philippines Qatar Qatar Qatar Qatar Qatar Qatar Qatar Qatar Qatar Russian Federation Russian Federation Russian Federation Russian Federation Russian Federation Russian Federation 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 6.40935 6.40935 6.40935 6.40935 6.40935 6.40935 6.40935 6.40935 2.57663 2.526224 2.472559 2.576221 2.653961 2.593879 2.549329 2.504922 2.504922 3.948594 3.894988 3.816968 3.702848 3.616376 3.490022 3.354421 3.217877 3.217877 6.283649 6.296009 6.296009 6.296009 6.296009 6.296009 6.296009 6.296009 6.296009 3.020703 2.745027 2.960576 2.697384 2.662948 2.698291 20102.24 19654.22 18610.81 18444.93 18459.22 17774.45 17393.55 16694.13 1245.74 1262.3 1290.37 1322.72 1356.67 1402.09 1449.53 1502.89 1489.65 2484.49 2610.97 2740.46 2866.82 3001.04 3167.5 3338.44 3500.93 3664.79 19868.12 20102.24 19654.22 18610.81 18444.93 18459.22 17774.45 17393.55 16694.13 9124.47 9475.68 9621.51 9520.94 9313.01 9313.97 45 17.14 18.9 21.62 24.64 26.12 24.53 21.56 23.11 9.74 10.49 11 10.76 10.97 11.31 11.27 11.71 11.7 9.71 10.79 10.82 10.56 10.91 11.26 11.32 12.04 12.47 15.82 17.14 18.9 21.62 24.64 26.12 24.53 21.56 23.11 17.63 17.97 18.68 18.03 17.77 18.47 46.7 48.1 52.4 65.4 66.7 42.8 61.4 64.4 14.7 19.9 19.8 19.8 25 26 28.7 28.9 38.5 22.3 29.2 28.6 29.9 42.7 46.1 50.6 52.9 68.5 34.8 61.4 62 66.5 66.6 69.2 68.5 70.4 75 31.1 55.5 59.6 60.6 65.4 66.8 49.3 44.5 33.4 33.6 38.2 42.8 53.9 64.4 14.5 10 8.1 10.7 20.4 22.6 23.4 21.6 21.6 30.8 23.6 21.3 20.8 21.3 27 26.9 32 33.3 52.2 40.6 40.4 33.8 34.4 35.6 37.2 43.2 31.9 62 55.2 62 54.6 57 58.5 Russian Federation Russian Federation Russian Federation Saudi Arabia Saudi Arabia Saudi Arabia Saudi Arabia Saudi Arabia Saudi Arabia Saudi Arabia Saudi Arabia Saudi Arabia Singapore Singapore Singapore Singapore Singapore Singapore Singapore Singapore Singapore Sri Lanka Sri Lanka Sri Lanka Sri Lanka Sri Lanka Sri Lanka Sri Lanka Sri Lanka Sri Lanka Tajikistan Tajikistan Tajikistan Tajikistan Tajikistan Tajikistan Tajikistan Tajikistan Tajikistan Thailand Thailand 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 2011 2012 2.637732 2.737773 2.734393 5.489552 5.356794 5.216891 5.267633 5.215105 5.151229 5.093545 5.037963 5.037963 2.633976 2.622157 2.659224 2.764671 2.773845 2.77958 2.77958 2.77958 2.77958 3.457447 3.541667 3.548132 3.531094 3.490446 3.502481 3.503189 3.503189 3.503189 2.533537 2.591471 2.604089 2.536868 2.473905 2.714104 2.788623 2.800389 2.800389 4.549069 4.689863 9473.18 9739.9 9942.37 19813.26 20249.8 20175.56 20327.67 20627.93 20503.38 19946.96 20067.78 19801.87 50685.3 51663.49 53292.61 54676.7 55646.62 56757.92 59271.06 61056.58 61173.9 3176.92 3462.94 3552.7 3694.3 3843.78 3972.1 4067.99 4157.28 4225.11 5182.04 5531.35 5654.29 5685.4 5840.05 6018.18 6247.99 6489.26 6617.54 5182.04 5531.35 46 18.22 17.71 18.37 19.39 19.97 22.45 26.06 30 25.83 24.44 24.62 23.85 9.24 8.86 9.74 9.63 10.19 10.28 10.18 10 10.3 9.24 8.86 9.74 9.63 10.19 10.28 10.18 10 10.3 13.65 12.84 13.3 14.04 11.56 11.76 11.39 11.22 11.15 16.14 16.35 69.7 70.3 80.7 30.2 60.6 62 61.8 63 67.1 68.7 66.9 71.7 69 84.1 87.3 87.6 86.9 88 87.8 87.3 89.6 17.3 21.3 22.2 22 44.9 46.5 48.4 49.3 50.3 9.4 11.6 12.1 12.1 9 16.3 16.3 36.4 21.3 32.3 59.7 57.5 57.6 68.6 65.5 59.8 48.1 49.5 52.3 52 62.7 63.2 69.5 58.2 55.7 39.1 39.8 40.4 44 54.3 50.3 52.9 45.1 35.3 29.9 30.5 29.3 30.5 34.5 32.3 47.6 40.3 41.2 41.6 43.4 44.6 50 47.5 46.3 48.2 43.8 Thailand Thailand Thailand Thailand Thailand Thailand Thailand Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey United Arab Emirates United Arab Emirates United Arab Emirates United Arab Emirates United Arab Emirates United Arab Emirates United Arab Emirates United Arab Emirates United Arab Emirates Vietnam Vietnam Vietnam Vietnam Vietnam Vietnam Vietnam 2013 2014 2015 2016 2017 2018 2019 2011 2012 2013 2014 2015 2016 2017 2018 2019 4.135783 4.240385 3.758595 3.880643 3.789116 3.698804 3.512599 3.559474 3.564706 3.372679 3.599861 3.705799 3.91939 4.621441 4.735817 4.569631 5654.29 5685.4 5840.05 6018.18 6247.99 6489.26 6617.54 9299.14 9586.77 10225.72 10549.68 11006.28 11187.05 11835.26 12006.82 11955.43 16.36 16.92 17.12 16.87 16.3 16.17 16.18 13.6 14.13 14.02 14.02 13.81 14.73 14.38 14.68 15.48 33.6 33.7 44.7 48.4 53.2 55.6 60.8 30.1 31.5 30.9 32.3 48.9 50.7 56.7 58.8 73.3 42.7 43.2 51.1 43.3 40.6 37.7 40.6 49.9 41.2 40.8 41.7 47.7 50 45.5 42.5 44 2011 5.42132 33246.14 9.95 45.6 56.8 2012 4.93858 33996.54 9.73 69.7 49.3 2013 4.519599 35495.77 10.98 67.3 70.2 2014 4.635098 36995.7 10.93 71.2 66.3 2015 4.419556 38663.4 12.43 78.6 70.6 2016 4.225256 39400.02 12.53 80.2 43.8 2017 4.050082 39798.52 13.21 78.3 75.6 2018 3.8977 39670.93 11.82 78.9 62.5 2019 2011 2012 2013 2014 2015 2016 2017 3.8977 3.536913 3.182773 3.093535 3.044959 3.067077 3.10559 3.096419 40438.34 1733.31 1805.36 1883.31 1975.08 2085.1 2191.82 2317.37 12.28 5.91 5.93 6.16 6.27 6.33 6.51 6.51 88.7 22.1 28.2 27.3 28.9 40.1 41.3 52 61.9 45.1 42.9 56.8 45.1 48.3 61 61.2 47 Vietnam Vietnam 2018 2019 3.078189 3.078189 2456.79 2604.22 48 6.47 6.46 52.7 57.5 61.2 61.2

Ngày đăng: 23/10/2023, 06:19

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w