1. Trang chủ
  2. » Luận Văn - Báo Cáo

Xây Dựng Một Số Bộ Dữ Liệu Phân Tán Trong Không Gian 2D Cho Phương Pháp Rbf-Fd Giải Phương Trình Poisson.pdf

61 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 61
Dung lượng 3,03 MB

Nội dung

Chương 1 1 NGUYỄN NGỌC KHÁNH XÂY DỰNG MỘT SỐ BỘ DỮ LIỆU PHÂN TÁN TRONG KHÔNG GIAN 2D CHO PHƢƠNG PHÁP RBF FD GIẢI PHƢƠNG TRÌNH POISSON CHUYÊN NGÀNH KHOA HỌC MÁY TÍNH MÃ SỐ 60 48 01 LUẬN VĂN THẠC SĨ THÁ[.]

1 NGUYỄN NGỌC KHÁNH XÂY DỰNG MỘT SỐ BỘ DỮ LIỆU PHÂN TÁN TRONG KHÔNG GIAN 2D CHO PHƢƠNG PHÁP RBF-FD GIẢI PHƢƠNG TRÌNH POISSON CHUYÊN NGÀNH: KHOA HỌC MÁY TÍNH MÃ SỐ: 60.48.01 LUẬN VĂN THẠC SĨ THÁI NGUYÊN - 2013 Tai ngay!!! Ban co the xoa dong chu nay!!! Tôi xin cam đoan: Luận văn sản phẩm nghiên cứu Số liệu luận văn trung thực Tài liệu nghiên cứu có nguồn gốc rõ ràng Tôi xin chịu trách nhiệm nghiên cứu Học viên thực luận văn Nguyễn Ngọc Khánh LỜI CẢM ƠN Để hồn thành luận văn thạc sĩ cách hoàn chỉnh, bên cạnh nỗ lực cố gắng thân có hƣớng dẫn nhiệt tình q Thầy Cơ, nhƣ động viên ủng hộ gia đình bạn bè suốt thời gian học tập nghiên cứu thực luận văn thạc sĩ Xin chân thành bày tỏ lịng biết ơn đến giáo TS Đặng Thị Oanh, ngƣời hết lòng giúp đỡ tạo điều kiện tốt cho tơi hồn thành luận văn Xin gửi lời tri ân điều mà cô dành cho tơi Xin chân thành bày tỏ lịng biết ơn đến tồn thể q Thầy Cơ Trƣờng Đại Học Cơng Nghệ Thông Tin & Truyền Thông nhƣ quý Thầy Cơ tận tình truyền đạt kiến thức q báu tạo điều kiện thuận lợi cho suốt trình học tập nghiên cứu thực luận văn Xin chân thành bày tỏ lịng biết ơn đến gia đình, ngƣời không ngừng động viên, hỗ trợ tạo điều kiện tốt cho suốt thời gian học tập thực luận văn Cuối cùng, xin chân thành bày tỏ lòng biết ơn đến anh chị bạn bè đồng nghiệp hỗ trợ cho tơi nhiều suốt q trình học tập, nghiên cứu thực luận văn thạc sĩ cách hoàn chỉnh Thái Nguyên, tháng 12 năm 2013 Học viên thực Nguyễn Ngọc Khánh DANH MỤC CÁC TỪ VIẾT TẮT Từ Ý nghĩa RBF Radial Basic Function FD Finite Different LLF Lee Liu Fan MQ Multiquadric IMQ Inverse Multiquadric Gauss Gaussian BST Binary Search Tree W33 Wendlend's C6 DANH MỤC HÌNH VẼ Trang Hình 2.1 Sinh tâm ngẫu nhiên (200 tâm số 4000 tâm) 30 Hình 2.2 Sinh tâm ngẫu nhiên (400 tâm số 4000 tâm) 30 Hình 2.3 Sinh tâm ngẫu nhiên (800 tâm số 4000 tâm) 31 Hình 2.4 Cấu trúc ngựa vằn (200 tâm với độ rộng dải trống 0.65) 32 Hình 2.5 Cấu trúc ngựa vằn (800 tâm với độ rộng dải trống 0.65) 32 Hình 2.6 Cấu trúc ngựa vằn (800 tâm với độ rộng dải trống 0.13) 33 Hình 2.7 Cấu trúc ngựa vằn (1200 tâm với độ rộng dải trống 0.13) 33 Hình 2.8 Cấu trúc ngựa vằn (800 tâm với độ rộng dải trống 0.15) 34 Hình 2.9 Cấu trúc ngựa vằn (1200 tâm với độ rộng dải trống 0.15) 34 Hình 2.10 Hình 2.11 Hình 2.12 Hình 2.13 Hình 2.14 Hình 2.15 Hình 2.16 Hình 2.17 Cấu trúc co xung quanh điểm có tọa độ nguyên (200 tâm miền với hệ số co 0.2) Cấu trúc co xung quanh điểm có tọa độ nguyên (400 tâm miền với hệ số co 0.2) Cấu trúc co xung quanh điểm có tọa độ nguyên (400 tâm miền với hệ số co 0.4) Cấu trúc co xung quanh điểm có tọa độ nguyên (800 tâm miền với hệ số co 0.4) Cấu trúc co xung quanh điểm có tọa độ nguyên (400 tâm miền với hệ số co 0.6) Cấu trúc co xung quanh điểm có tọa độ nguyên (800 tâm miền với hệ số co 0.6) Cấu trúc co xung quanh điểm có tọa độ nguyên (400 tâm miền với hệ số co 0.8) Cấu trúc co xung quanh điểm có tọa độ nguyên 37 37 38 38 39 39 40 40 (800 tâm miền với hệ số co 0.8) Hình 2.18 Hình 2.19 Hình 2.20 Hình 2.21 Hình 3.1 Bộ tâm sản phẩm thuật tốn làm mịn thích nghi (với số nút miền = 145 số nút biên = 44) Bộ tâm sản phẩm thuật tốn làm mịn thích nghi (Số nút miền 206 số nút biên 54) Bộ tâm sản phẩm thuật toán làm mịn thích nghi (số nút miền = 283 số nút biên= 74) Bộ tâm sản phẩm thuật tốn làm mịn thích nghi (với số nút miền = 433 số nút biên = 102) Giao diện chƣơng trình Bảng 3.1 46 46 47 49 50 Hình 3.2 Bảng1.1 45 Một số hàm sở bán kính dùng báo cáo Bảng sai số RMS tâm đƣợc biểu diễn nhƣ hình 3.2 19 50 MỤC LỤC LỜI MỞ ĐẦU 10 CHƢƠNG 12 MỘT SỐ KIẾN THỨC CƠ SỞ .12 1.1 ĐIỀU KIỆN VẬT LÝ DẪN ĐẾN PHƢƠNG TRÌNH POISSON .12 1.2 HỆ PHƢƠNG TRÌNH ĐẠI SỐ TUYẾN TÍNH 13 1.3 MỘT SỐ PHƢƠNG PHÁP GIẢI HỆ PHƢƠNG TRÌNH ĐẠI SỐ TUYẾN TÍNH 15 1.3.1 Phƣơng pháp Gauss 15 1.3.2 Phƣơng pháp truy đuổi giải hệ phƣơng trình với ma trận ba đƣờng chéo 17 1.4 MỘT SỐ ĐỊNH NGHĨA VÀ KHÁI NIỆM CƠ BẢN 19 1.4.1 Định nghĩa liệu phân tán .19 1.4.2 Một số định nghĩa liên quan đến hàm Radial Basis Function-RBF 19 1.4.3 Định nghĩa véc tơ trọng số .20 1.5 NỘI SUY HÀM RBF 20 1.5.1 Nội suy liệu phân tán không gian Rd 20 1.5.2 Nội suy với hàm sở theo bán kính 21 1.6 PHƢƠNG PHÁP SAI PHÂN HỮU HẠN (Finite Different FD) .22 1.6.1 Bài toán 22 1.6.2 Rời rạc toàn Dirichlet 23 1.6.3 Lƣợc đồ sai phân hữu hạn giải tốn Dirichlet với phƣơng trình Poisson 23 CHƢƠNG 25 MỘT SỐ PHƢƠNG PHÁP XÂY DỰNG BỘ DỮ LIỆU PHÂN TÁN TRONG KHÔNG GIAN 2D 25 2.1 PHƢƠNG PHÁP RBF-FD (Radial Basis Function Finite Different) 25 2.1.1 Véc tơ trọng số dựa vào hàm nội suy theo sở bán kính25 2.1.2 Ma trận hệ số (ma trận cứng) 27 2.1.3 Lƣợc đồ RBF 27 2.2 THUẬT TOÁN CHỌN BỘ TÂM HỖ TRỢ TÍNH HỆ SỐ NỘI SUY HÀM RBF 28 2.3 MỘT SỐ PHƢƠNG PHÁP XÂY DỰNG BỘ DỮ LIỆU PHÂN TÁN 32 2.3.1 Bộ tâm ngẫu nhiên 32 2.3.2 Cấu trúc Ngựa vằn (Zebra) 34 2.3.3 Cấu trúc co xung quanh điểm có tọa độ nguyên.37 2.3.4 Làm mịn thích nghi 43 CHƢƠNG 50 THỬ NGHIỆM SỐ 50 3.1 GIAO DIỆN CHÍNH CỦA CHƢƠNG TRÌNH 50 3.2 SAI SỐ VÀ CÁC BÀI TOÁN THỬ NGHIỆM 50 3.2.1 Sai số 50 3.2.2 Các toán 51 3.3 KẾT QUẢ THỬ NGHIỆM 51 3.3.1 Thử nghiệm sinh tâm ngẫu nhiên 51 3.3.2 Thử nghiệm cấu trúc ngựa vằn 52 3.3.3 Thử nghiệm sinh tâm co xung quanh điểm : 54 3.3.4 Thử nghiệm cấu trúc sinh tâm thích nghi 56 .58 .59 NHẬN XÉT CỦA GIÁO VIÊN HƢỚNG DẪN 61 10 LỜI MỞ ĐẦU Trong suốt kỷ XX loạt phƣơng pháp số hình thành phát triển nhƣ phƣơng pháp sai phân hữu hạn, phƣơng pháp phần tử hữu hạn v.v… đem lại đóng góp to lớn việc ứng dụng phƣơng pháp toán học vào thực tiễn Các phƣơng pháp vừa nêu nói chung phƣơng pháp lƣới Tuy nhiên, phƣơng pháp nhiều hạn chế áp dụng vào lớp tốn thực tế có miền hình học liệu phân bố phân tán Vào khoảng năm cuối kỷ trƣớc hình thành xu hƣớng phƣơng pháp số: Phƣơng pháp không lƣới Cũng nhƣ phƣơng pháp lƣới, để giải tốn biên phƣơng pháp khơng lƣới cần thiết có tập hợp nút, mà gọi tâm để tính tốn Từ tâm ta xấp xỉ toán tử vi phân tổ hợp giá trị hàm nút Phƣơng pháp tìm vectơ trọng số dựa hàm sở bán kính (RBF – Radial Basis Function) gọi phƣơng pháp dựa vào nội suy liệu phân tán với hàm sở bán kính RBF – FD (Radial Basis Function – Finite Different) Khi áp dụng phƣơng pháp này, khó khăn gặp phải chọn tâm hỗ trợ cho việc tính véc tơ trọng số Nhờ giúp đỡ TS Đặng Thị Oanh, mạnh dạn chọn đề tài: “Xây dựng số liệu phân tán không gian 2D cho phương pháp RBF-FD giải phương trình Poisson” Mục đích đề tài xây dựng số tâm có cấu trúc đặc biệt để test độ mạnh số thuật tốn chọn tâm hỗ trợ cho tính véc tơ số Trên sở thực test rút đƣợc số nhận xét nhằm cải tiến việc chọn tâm cho nội suy hàm RBF tốt Nội dung luận văn bao gồm chƣơng: Chƣơng 1: Một số kiến thức sở 47 số tâm nhỏ cho phép (trong thử nghiệm ta, 10 tâm số tâm nhỏ cần được sinh ra) c Đánh giá độ phức tạp Mệnh đề 2.2 Cho N số tâm rời rạc tập tâm tập lân cận int , k số tâm cần thiết tập , Nint số , m>k số tâm Khi đó, độ phức tạp thuật toán O m.Nint log N Chứng minh I Vì bƣớc I sử dụng Thuật Tốn nên độ phức tạp O m.Nint log N II Chi phí tính tốn bƣớc II O(N) III Tính chi phí tính tốn bƣớc III i Chi phí tính tốn Nint O m.Nint log N (áp dụng Thuật tốn 1) ii Chi phí tính tốn O( k ) Vì chi phí tính tốn bƣớc III Nint O m.Nint log N Chi phí tính tốn Nmark.O(N) Với Nmark nhỏ so với Nint Chi phí tính tốn O m.Nint log N Vì chi phí tính tốn Bƣớc III theo quy tắc cộng, nên độ phức tạp tính tốn bƣớc O m.Nint2 log N Vì chi phí tính tốn đoạn chƣơng trình từ Bƣớc I đến Bƣớc Thuật toán theo quy tắc cộng nên độ phức tạp thuật toán O m.Nint log N 48 Hình 2.18 Bộ tâm sản phẩm thuật tốn làm mịn thích nghi (với số nút miền = 145 số nút biên = 44) Hình 2.19 Bộ tâm sản phẩm thuật tốn làm mịn thích nghi (Số nút miền 206 số nút biên 54) 49 Hình 2.20 Bộ tâm sản phẩm thuật toán làm mịn thích nghi (số nút miền = 283 số nút biên= 74) Hình 2.21 Bộ tâm sản phẩm thuật tốn làm mịn thích nghi (với số nút miền = 433 số nút biên = 102) 50 CHƢƠNG 3: THỬ NGHIỆM SỐ 3.1 GIAO DIỆN CHÍNH CỦA CHƢƠNG TRÌNH Giao diện chƣơng trình: Hình 3.1 Giao diện chƣơng trình 3.2 SAI SỐ VÀ CÁC BÀI TOÁN THỬ NGHIỆM 3.2.1 Sai số RMS (Root Mean Square) RMS error int  u int u 51 3.2.2 Các toán Ta thử nghiệm với toán sau: (1.35)-(1.36 u [1,4]2 sin( x)sin y dirichlet thỏa mãn phƣơng trình 2sin( x)sin( y) (1.35)-(1.36 dirichlet thỏa mãn [1,4] u sin(5x)sin(5y) phƣơng trình -50sin(5x)sin(5y) u (x (1.35)-(1.36 [1,4]2 y )3 dirichlet thỏa mãn phƣơng trình 12(x+y) u 12( x y) (1.35)-(1.36 [1,4]2 dirichlet thỏa mãn phƣơng trình ( x y )3 3.3 KẾT QUẢ THỬ NGHIỆM 3.3.1 Thử nghiệm sinh tâm ngẫu nhiên [1, 4]2 3.2 Hình 3.2 52 Bảng sai số ứng với toán Số tâm (k) Sai số RMS Sai số RMS Sai số RMS Sai số RMS toán toán toán toán 200 0.0051 0.3672 0.0262 0.0495 300 0.0034 0.2922 0.0396 0.0165 400 0.0019 0.1877 0.0095 0.0112 800 0.0016 0.1509 0.0181 0.0105 1200 0.0010 0.0563 0.0042 0.0012 Bảng 3.1 Bảng sai số RMS tâm biểu diễn hình 3.2 Kết Luận : Ta dựa vào bảng sai số thử nghiệm nhận thấy cấu trúc sinh tâm ngẫu nhiên, mà số tâm tăng lên sai số giảm, nên thuật tốn chọn tâm thích hợp với cấu trúc 3.3.2 Thử nghiệm cấu trúc ngựa vằn [1, 4]2 Chọn c = 0, d = 0.13 3.3 53 Bảng sai số ứng với toán Số tâm (k) Sai số RMS Sai số RMS Sai số RMS Sai số RMS toán toán toán toán 200 0.0012 0.0300 0.0032 0.0024 300 0.0321 0.0246 0.0016 0.0103 400 0.0018 0.0706 0.0302 0.0348 800 0.1159 0.7785 0.3691 0.2459 1200 0.0529 0.9026 0.0777 0.7789 Bảng 3.2 Bảng sai số RMS tâm biểu diễn hình 3.3 [1, 4]2 Chọn c = 0, d = 0.15 3.4 Hình 3.4 54 Bảng sai số ứng với toán Số tâm (k) Sai số RMS Sai số RMS Sai số RMS Sai số RMS toán toán toán toán 200 0.0103 0.0453 0.0012 0.0072 300 0.0356 0.0092 0.0034 0.0195 400 0.0647 0.0981 0.0420 0.0947 800 0.1102 0.1091 0.1948 0.3858 1200 0.0467 0.7890 0.0651 0.4950 Bảng 3.3 Bảng sai số RMS tâm biểu diễn hình 3.4 Kết Luận : Ta dựa vào bảng sai số thử nghiệm nhận thấy cấu trúc ngựa vằn, mà số tâm tăng lên sai số khơng giảm, nên thuật tốn chọn tâm khơng thích hợp với cấu trúc 3.3.3 Thử nghiệm sinh tâm co xung quanh điểm : [1, 4]2 Chọn c = 0.4, d = 3.5 3.5 55 Bảng sai số ứng với toán Số tâm (k) Sai số RMS Sai số RMS Sai số RMS Sai số RMS toán toán toán toán 200 0.0069 0.0948 0.0038 0.0131 300 0.4593 0.0492 0.0012 4.2931 400 0.9458 0.0489 0.0478 2.5675 800 0.3859 0.3693 0.3890 1.2874 1200 0.6794 0.3524 0.0938 4.2319 Bảng 3.4 Bảng sai số RMS tâm biểu diễn hình 3.5 [1, 4]2 Chọn c = 0.8, d = h 3.6 3.6 56 Bảng sai số ứng với toán Số tâm (k) Sai số RMS Sai số RMS Sai số RMS Sai số RMS toán toán toán toán 200 0.0859 0.0839 0.1485 0.8490 300 0.4950 0.0489 1.1579 4.9180 400 0.5843 0.0154 2.5766 1.2547 800 0.9459 0.9163 1.3546 2.9370 1200 1.3356 0.1755 3.5169 3.5680 Bảng 3.5 Bảng sai số RMS tâm biểu diễn hình 3.6 Kết Luận : Ta dựa vào bảng sai số thử nghiệm nhận thấy cấu trúc co xung quanh điểm có tọa độ nguyên, mà số tâm tăng lên sai số khơng giảm, nên thuật tốn chọn tâm khơng thích hợp với cấu trúc 3.3.4 Thử nghiệm cấu trúc sinh tâm thích nghi [1, 4]2 3.7 3.7 57 Bảng sai số ứng với toán Số tâm (k) Sai số RMS Sai số RMS Sai số RMS Sai số RMS toán toán toán toán 200 0.0149409 0.0118597 0.014008 0.0149360 300 0.0024839 0.0019700 0.0028278 0.0105908 400 0.0022859 0.0286095 0.0024477 0.0028537 800 0.0013907 0.0022537 0.0010157 0.0159960 1200 0.0002907 0.0002780 0.0003869 0.0001596 Bảng 3.6 Bảng sai số RMS tâm biểu diễn hình 3.7 Kết Luận : Ta dựa vào bảng sai số thử nghiệm nhận thấy cấu trúc sinh tâm thích nghi, mà số tâm tăng lên sai số giảm, nên thuật tốn chọn tâm thích hợp với cấu trúc  Mục đích thử nghiệm: Kiểm tra độ mạnh thuật tốn chọn tâm (vì độ xác nghiệm xấp xỉ phụ thuộc nhiều vào thuật toán chọn tâm)  Đối với cấu trúc ngẫu nhiên, cấu trúc sinh tâm thích nghi, số tâm chia địa phƣơng, sai số giảm dần số tâm tăng Vậy nên thuật tốn chọn tâm thích hợp với hai cấu trúc  Đối với cấu trúc ngựa vằn cấu trúc co đều, số tâm không địa phƣơng, sai số không giảm số tâm tăng Vậy nên thuật toán chọn tâm cần cải tiến lại tìm thuật tốn để phù hợp với cấu trúc 58 Trong trình thực đề tài luận văn: " Xây dựng số liệu phân tán không gian 2D cho phương pháp RBF-FD giải phương trình Poisson " , : - Tìm hiểu số kiến thức sở - Tìm hiểu nội suy hàm RBF - Tìm hiểu phƣơng pháp RBF-FD giải phƣơng trình Poisson - Tìm hiểu cài đặt thuật tốn chọn tâm - Tìm hiểu số phƣơng pháp xây dựng tâm : - Xây dựng đƣợc số liệu phân tán để hỗ trợ giải phƣơng trình 2D - Cài đặt thử nghiệm Tuy nhi Hƣớng phát triển đề tài: Xây dựng đƣợc thêm nhiều tâm để hỗ trợ test phƣơng pháp chọn tâm phƣơng pháp RBF - FD 59 [1] T Cecil, J Qian, and S Osher Numerical methods for high dimensional hamilton-jacobi equations using radial basis functions J Comput Physis., 196(1):327-347, 2004 [2] Oleg Davydov and D T Oanh Adaptive meshless centres and RBF stencils for Poisson equation Journal of Computational Physis, 230:287304,2011 [3] Oleg Davydov and D T Oanh On the optimal shape parameter for Gausian radial Basis Function finite difference approximation of the Poisson equation Computers and Mathematics with Applications: 62: 2143-2161, 2011 [4] P S Jensen Finite differrent techniques for variable grids Comput Struct., 2(1 – 2):17 – 29, 1972 [5] T Liszka and J Orkisz The finite difference method at arbittrary irregular grids and its application in applied mechanics Comput Struct., 11:83-95, 1980 [6] L Shen G Lv, and Z Shen A finite point method based on directional differences SIAM Journal on numerical analysis, 47 (3): 22242242, 2009 [7] A I Tolstykh and D A Shirobokov On using radial basis function in a ‗finite difference mode‘ with applications to elasticity problems Computational Mechanics, 33(1): 68-79, 2003 [8] G F Fasshauer Meshfree Approximation Methods with MATLAB, World Scientific Publishing Co., Inc, River Edge, NJ, USA, 2007 [9] Đặng Thị Oanh, Phƣơng pháp khơng lƣới giải phƣơng trình Poisson, Luận án tiến sĩ, 2012 60 [10] Đặng Thị Oanh Đặng Quang Á, Sử dụng hàm sở bán kính RBF tập liệu tán xạ để tính đạo hàm, Kỷ yếu hội thảo quốc gia công nghệ thông tin (2008), 383-394 [11] Đặng Thị Oanh, RBF stencil for Poisson equation Tạp chí Khoa học Công nghệ - Đại học Thái nguyên (2011), 78(02): 63-66 [12] Tạ Văn Đĩnh, Phƣơng pháp sai phân hữu hạn phần tử hữu hạn, Tạ Văn Đĩnh, Nhà xuất Khoa học kỹ thuật, 2002 [13] C K Lee X Liu, and S C Fan Local multiquadric approximation for solving boundary value problems Comput Mech., 30 (5-6): 396-409, 203 61 NHẬN XÉT CỦA GIÁO VIÊN HƢỚNG DẪN

Ngày đăng: 18/10/2023, 14:13

w