Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 110 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
110
Dung lượng
6,98 MB
Nội dung
ỦY BAN NHÂN DÂN THÀNH ĐỒN TP HỒ CHÍ MINH THÀNH PHỐ HỒ CHÍ MINH TRUNG TÂM PHÁT TRIỂN SỞ KHOA HỌC VÀ CÔNG NGHỆ KHOA HỌC VÀ CÔNG NGHỆ TRẺ CHƯƠNG TRÌNH KHOA HỌC VÀ CƠNG NGHỆ CẤP THÀNH PHỐ BÁO CÁO TỔNG HỢP KẾT QUẢ NHIỆM VỤ NGHIÊN CỨU KHOA HỌC VÀ CÔNG NGHỆ NGHIÊN CỨU TỔNG HỢP VÀ ỨNG DỤNG VẬT LIỆU KHUNG HỮU CƠ LƯỠNG KIM LOẠI M/Fe−MOFs (M: Ni, Co, Cu) TRONG HẤP PHỤ CHẤT MÀU HỮU CƠ ĐỘC HẠI Cơ quan chủ trì nhiệm vụ: Trung tâm Phát triển Khoa học Công nghệ Trẻ Chủ nhiệm nhiệm vụ: ThS Trần Thị Kim Ngân Thành phố Hồ Chí Minh - 2022 i ỦY BAN NHÂN DÂN THÀNH ĐỒN TP HỒ CHÍ MINH THÀNH PHỐ HỒ CHÍ MINH TRUNG TÂM PHÁT TRIỂN SỞ KHOA HỌC VÀ CÔNG NGHỆ KHOA HỌC VÀ CÔNG NGHỆ TRẺ CHƯƠNG TRÌNH KHOA HỌC VÀ CƠNG NGHỆ CẤP THÀNH PHỐ BÁO CÁO TỔNG HỢP KẾT QUẢ NHIỆM VỤ NGHIÊN CỨU KHOA HỌC VÀ CÔNG NGHỆ NGHIÊN CỨU TỔNG HỢP VÀ ỨNG DỤNG VẬT LIỆU KHUNG HỮU CƠ LƯỠNG KIM LOẠI M/Fe−MOFs (M: Ni, Co, Cu) TRONG HẤP PHỤ CHẤT MÀU HỮU CƠ ĐỘC HẠI (Đã chỉnh sửa theo kết luận Hội đồng nghiệm thu ngày 03/12/2022) Chủ nhiệm nhiệm vụ: Chủ tịch Hội đồng nghiệm thu ThS Trần Thị Kim Ngân Cơ quan chủ trì nhiệm vụ Đồn Kim Thành Thành phố Hồ Chí Minh- 2022 ii THÀNH ĐỒN TP HỒ CHÍ MINH TRUNG TÂM PHÁT TRIỂN KHOA HỌC VÀ CƠNG NGHỆ TRẺ CỘNG HỒ XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự - Hạnh phúc ., ngày tháng năm 200 BÁO CÁO THỐNG KÊ KẾT QUẢ THỰC HIỆN NHIỆM VỤ NGHIÊN CỨU KH&CN I THƠNG TIN CHUNG Tên nhiệm vụ: Thuộc: Chương trình/lĩnh vực (tên chương trình/lĩnh vực): Vườn ươm Sáng tạo Khoa học Công nghệ trẻ Chủ nhiệm nhiệm vụ: Họ tên: Trần Thị Kim Ngân Ngày, tháng, năm sinh: 18/04/1996 Nam/ Nữ: Nữ Học hàm, học vị: Thạc sĩ Chức vụ: Nghiên cứu viên Điện thoại quan: (028)3.9405.875, di động: 0765712086 Fax: (028)3.9404.759 E-mail: nganttk@ntt.edu.vn, kimnganvz96@gmail.com Tên tổ chức công tác: Trường Đại học Nguyễn Tất Thành Địa tổ chức: 300A, Nguyễn Tất Thành, Phường 13, Quận 4, Tp Hồ Chí Minh Địa nhà riêng: 512 Nguyễn Xiển, Phường Long Thạnh Mỹ, Quận 9, Tp Hồ Chí Minh Tổ chức chủ trì nhiệm vụ: Tên tổ chức chủ trì nhiệm vụ: Trung tâm Phát triển Khoa học Công nghệ Trẻ Điện thoại: 028.38.230.780 E-mail: khoahoctre@gmail.com Website: khoahoctre.com.vn Địa chỉ: Số 01 Phạm Ngọc Thạch, Phường Bến Nghé, Quận Họ tên thủ trưởng tổ chức: Đoàn Kim Thành Số tài khoản: 3713.0.1083277.00000 - Tại Kho bạc Nhà nước Quận II TÌNH HÌNH THỰC HIỆN Thời gian thực nhiệm vụ: - Theo Hợp đồng ký kết: từ 08 tháng 12 năm 2021 đến 08 tháng 12 năm 2022 - Thực tế thực hiện: : từ 08 tháng 12 năm 2021 đến 08 tháng 12 năm 2022 - Được gia hạn (nếu có): khơng iii Kinh phí sử dụng kinh phí: a) Tổng số kinh phí thực hiện: 90 tr.đ, đó: + Kính phí hỗ trợ từ ngân sách khoa học: 90 tr.đ + Kinh phí từ nguồn khác: tr.đ b) Tình hình cấp sử dụng kinh phí từ nguồn ngân sách khoa học: Số TT Theo kế hoạch Thời gian Kinh phí (Tháng, năm) (Tr.đ) Thực tế đạt Thời gian Kinh phí (Tháng, năm) (Tr.đ) Ghi (Số đề nghị toán) … c) Kết sử dụng kinh phí theo khoản chi: Đối với đề tài: Đơn vị tính: Triệu đồng Số TT Nội dung khoản chi Trả công lao động (khoa học, phổ thông) Nguyên, vật liệu, lượng Thiết bị, máy móc Xây dựng, sửa chữa nhỏ Chi khác Tổng cộng Theo kế hoạch Tổng NSKH 82.595 170 82.595 170 Nguồn khác 82.595 82.595 .170 170 90.000 90.000 .000 000 Thực tế đạt Tổng NSKH 82.595 170 82.595 170 Nguồn khác 82.595 82.595 .170 170 90.000 90.000 .000 000 - Lý thay đổi (nếu có): Đối với dự án: Đơn vị tính: Triệu đồng Số TT Nội dung khoản chi Thiết bị, máy móc mua Nhà xưởng xây dựng mới, cải tạo Kinh phí hỗ trợ công Theo kế hoạch Tổng NSKH iv Nguồn khác Thực tế đạt Tổng NSKH Nguồn khác nghệ Chi phí lao động Nguyên vật liệu, lượng Thuê thiết bị, nhà xưởng Khác Tổng cộng - Lý thay đổi (nếu có): Các văn hành q trình thực đề tài/dự án: (Liệt kê định, văn quan quản lý từ công đoạn xét duyệt, phê duyệt kinh phí, hợp đồng, điều chỉnh (thời gian, nội dung, kinh phí thực có); văn tổ chức chủ trì nhiệm vụ (đơn, kiến nghị điều chỉnh có) Số TT Số, thời gian ban hành văn Số: 10 /2021/HĐ – KHCNT – VƯ ngày 08 tháng 12 năm 2021 Số 01 ngày 08/12/2021 Số 02 ngày 01/02/2022 Số 03 ngày 05/02/2022 Số 04 ngày 10/02/2022 Số 05 ngày 15/02/2022 Số 06 ngày 25/03/2021 Tên văn Ghi Hợp đồng thuê khoán dự tốn kinh phí thực đề tài năm 2021 Đạt Hợp đồng th khốn chun mơn Đạt Hợp đồng th khốn chun mơn Đạt Hợp đồng th khốn chun mơn Đạt Hợp đồng th khốn chun mơn Đạt Hợp đồng th khốn chun mơn Đạt Hợp đồng th khốn chuyên môn Đạt Tổ chức phối hợp thực nhiệm vụ: Số TT Tên tổ chức đăng ký theo Thuyết minh Trường ĐH Nguyễn Tất Thành Tên tổ chức tham gia thực Trường ĐH Nguyễn Tất Thành Nội dung tham gia chủ yếu Chủ nhiệm đề tài, thư ký khoa học, thực v Sản phẩm chủ yếu đạt Ghi chú* − Quy trình Đạt vật liệu ổn định − Bài báo khoa học công bố - Lý thay đổi (nếu có): Cá nhân tham gia thực nhiệm vụ: (Người tham gia thực đề tài thuộc tổ chức chủ trì quan phối hợp, khơng q 10 người kể chủ nhiệm) Số TT Tên cá nhân đăng ký theo Thuyết minh Tên cá nhân tham gia thực Nội dung tham gia Trần Thị Kim Ngân Trần Thị Kim Ngân Chủ nhiệm đề tài Ngô Thị Cẩm Quyên Ngô Thị Cẩm Qun Thư ký đề tài Hồng Ngọc Bích Hồng Ngọc Bích Thành viên Lê Đăng Trường Lê Đăng Trường Thành viên vi Sản phẩm chủ yếu đạt − Nghiên cứu, tổng hợp, viết báo cáo khoa học − Biên tập gửi báo − Xây dựng thuyết minh chi tiết − Nghiên cứu tổng hợp vật liệu Fe−MOFs phương pháp nhiệt dung môi − Phân tích hình thái cấu trúc vật liệu Fe−MOFs − Phân tích hình thái cấu trúc vật liệu M/Fe−MOF s (M: Co, Cu, Ni) − Nghiên cứu tổng hợp M/Fe−MOF s (M: Co, Ni, Cu) phương pháp dung nhiệt Ghi chú* Hoàn thành Hoàn thành Hoàn thành Hoàn thành Nguyễn Thị Kim Oanh Phan Cao Phương Khánh Nguyễn Thị Kim Oanh Phan Cao Phương Khánh Thành viên Thành viên − Viết báo − Đánh giá khả hấp phụ hỗn hợp chất màu hữu vật liệu tổng hợp vật liệu Fe−MOFs, M//Fe−MOF s (M: Fe, Co, Ni, Cu) Hoàn thành Hoàn thành - Lý thay đổi ( có): Tình hình hợp tác quốc tế: Số TT Theo kế hoạch (Nội dung, thời gian, kinh phí, địa điểm, tên tổ chức hợp tác, số đoàn, số lượng người tham gia ) Thực tế đạt (Nội dung, thời gian, kinh phí, địa điểm, tên tổ chức hợp tác, số đoàn, số lượng người tham gia ) Ghi chú* - Lý thay đổi (nếu có): Tình hình tổ chức hội thảo, hội nghị: Theo kế hoạch Số (Nội dung, thời gian, kinh phí, địa TT điểm ) Báo cáo tham luận, 10/2022 Thực tế đạt (Nội dung, thời gian, kinh phí, địa điểm ) Ghi chú* - Lý thay đổi (nếu có): Tóm tắt nội dung, cơng việc chủ yếu: (Nêu mục 15 thuyết minh, không bao gồm: Hội thảo khoa học, điều tra khảo sát nước nước ngồi) Số TT Các nội dung, cơng việc chủ yếu (Các mốc đánh giá chủ yếu) Xây dựng thuyết minh chi tiết Thời gian (Bắt đầu, kết thúc - tháng … năm) Theo kế Thực tế đạt hoạch 01/2022 01/2022 vii Người, quan thực Ngô Thị Cẩm Nghiên cứu tổng hợp vật liệu Fe−MOFs phương pháp nhiệt dung mơi Phân tích hình thái cấu trúc vật liệu Fe−MOFs Nghiên cứu tổng hợp M/Fe−MOFs (M: Co, Ni, Cu) phương pháp dung nhiệt Phân tích hình thái cấu trúc vật liệu M/Fe−MOFs (M: Co, Cu, Ni) Đánh giá khả hấp phụ hỗn hợp chất màu hữu vật liệu tổng hợp vật liệu Fe−MOFs, M//Fe−MOFs (M: Fe, Co, Ni, Cu) Viết, biên tập gửi đăng báo: 01 Tạp chí Quốc tế thuộc hệ thống scopus (Q3, Q4) 01 báo đăng Chuyên san Phát triển Khoa học Công nghệ Báo cáo tổng kết đề tài 02/2022 03/2022 03/2022 04/2022 05/2022 06/2022 05/2022 06/2022 07/2022 08/2022 Qun Hồng Ngọc Bích Nguyễn Thi Kim Oanh Lê Đăng Trường Nguyễn Thi Kim Oanh Ngô Thị Cẩm Quyên 09/2022 11/2022 Trần Thị Kim Ngân 11/2022 12/2022 Trần Thị Kim Ngân - Lý thay đổi (nếu có): III SẢN PHẨM KH&CN CỦA NHIỆM VỤ Sản phẩm KH&CN tạo ra: a) Sản phẩm Dạng I: Số TT Tên sản phẩm tiêu chất lượng chủ yếu Đơn vị đo Số lượng Theo kế hoạch Thực tế đạt - Lý thay đổi (nếu có): b) Sản phẩm Dạng II: Số TT Tên sản phẩm Phương pháp tổng hợp vật liệu Fe−MOFs M/Fe−MOFs phương Yêu cầu khoa học cần đạt Theo kế hoạch Thực tế đạt Quy trình ổn Quy trình ổn định định viii Ghi Đạt pháp nhiệt dung môi Báo cáo tổng kết đề tài Đầy đủ nội dung nghiên cứu thuyết minh đề cương Đầy đủ nội dung Đạt nghiên cứu thuyết minh đề cương - Lý thay đổi (nếu có): c) Sản phẩm Dạng III: Số TT Tên sản phẩm Bài báo quốc tế Bài báo nước Yêu cầu khoa học cần đạt Theo Thực tế kế hoạch đạt Được chấp nhận Được chấp nhận đăng đăng Được chấp nhận Đã gửi đăng Số lượng, nơi công bố (Tạp chí, nhà xuất bản) 01, Processes, NXB MDPI Chuyên san Phát triển Khoa học Công nghệ Số lượng Theo kế hoạch Thực tế đạt Ghi (Thời gian kết thúc) - Lý thay đổi (nếu có): d) Kết đào tạo: Số TT Cấp đào tạo, Chuyên ngành đào tạo - Lý thay đổi (nếu có): đ) Tình hình đăng ký bảo hộ quyền sở hữu công nghiệp: Số TT Tên sản phẩm đăng ký Kết Theo kế hoạch Thực tế đạt Ghi (Thời gian kết thúc) - Lý thay đổi (nếu có): e) Thống kê danh mục sản phẩm KHCN ứng dụng vào thực tế Số Tên kết Thời gian ix Địa điểm Kết TT ứng dụng (Ghi rõ tên, địa nơi ứng dụng) sơ 2 Đánh giá hiệu nhiệm vụ mang lại: a) Hiệu về khoa học công nghệ: (Nêu rõ danh mục công nghệ mức độ nắm vững, làm chủ, so sánh với trình độ công nghệ so với khu vực giới…) b) Hiệu về kinh tế xã hội: (Nêu rõ hiệu làm lợi tính tiền dự kiến nhiệm vụ tạo so với sản phẩm loại thị trường…) Tình hình thực chế độ báo cáo, kiểm tra nhiệm vụ: Số TT I II III Thời gian thực Nội dung Báo cáo tiến độ Lần … Báo cáo giám định Lần … Nghiệm thu sở …… Ghi (Tóm tắt kết quả, kết luận chính, người chủ trì…) 25/08/2022 Chủ nhiệm đề tài Thủ trưởng tổ chức chủ trì (Họ tên, chữ ký đóng dấu) (Họ tên, chữ ký) x Processes 2022, 10, 1352 10 of 14 The first-order pseudo model proposes an assumption about the adsorption rate in relation to the number of unabsorbed centroids: ln(qe − qt ) = ln qe − k1 t (1) where k1 is the first-order pseudo ratio (1/min), the adsorption capacity qt at time t (min) and the equilibrium adsorption capacity qe (mg/g) at the equilibrium time (min) The second-order pseudo equation is used to describe the adsorption via chemisorption with the rate constant k2 (g/mgmin) The equation is calculated as follows: t t = + qt qe k2 q2e (2) Based on the calculated data in Table 2, the correlation coefficient (R2 ) for all adsorption kinetic models is very high (R2 MB = 0.9732 and 0.9797), (R2 MO = 0.9073 and 0.9967), (R2 CR = 0.9954 and 0.9974), and (R2 RhB = 0.8699 and 0.9199), respectively, showing good statistical compatibility between the surveyed data The data results show that the dye adsorption is consistent with the pseudo second order (PSO) versus pseudo first order (PFO) model based on the correlation coefficient R2 of PSO > PFO 3.6 Adsorption Isotherm To describe the monolayer adsorption behavior of materials, the Langmuir model assumes the adsorption mechanism occurs on a homogeneous surface with an infinitely large number of adsorption centers The following formula characterizes the Langmuir equation: 1 1 = · + qe qm kL Ce qm (3) where Ce (mg/L) and qe (mg/g) is the equilibrium concentrations and adsorption capacity, and qm (mg/g) and KL (L/mg) are the maximum adsorption capacity and Langmuir’s constant The multilayer adsorption process on the heterogeneous surface is described by the Freundlich model Accordingly, the Freundlich equation assumes the relationship between reversible adsorption and ideal adsorption occurring at different energy levels according to the following equation: ln qe = ln kF + ln Ce (4) n where 1/n and KF [(mg/g)(L/mg)1/n] are Freundlich coefficients related to the compatibility of the adsorption process and adsorption capacity, respectively The parameters of the isotherm model calculated using the nonlinear regression are listed in Table and Figure However, based on the R2 value, it is clear that the experimental data are in good agreement with the Langmuir model (R2 = 0.99) rather than the Freundlich model (R2 = 0.91) for MB Besides, MO with a correlation coefficient of R2 > 0.98 complies with both isothermal models For 0.3 CoFe-MOF, according to this experimental data, the CR adsorption process (R2 = 0.89) follows the Langmuir model and does not fit the Freundlich model The R2 correlation coefficients of RhB are 0.79128 and 0.7772, showing that the experimental data not fit both Langmuir and Freundlich models Table Isotherm parameters of dyes adsorption onto 0.3 CoFe-MOF Model Langmuir Freundlich Parameter kL Qm R2 kF 1/n R2 Unit L/mg mg/g – (mg/g)/(mg/)1/n – – MB RhB MO CR 0.0420 600.9305 0.99 148.59 0.2428 0.91 0.1464 61.5874 0.79128 44.3143 0.0533 0.7772 0.7009 131.9806 0.9837 124.5085 0.0088 0.98226 1.5313 168.9234 0.89 – – – Processes 2022, 10, 1352 11 of 14 Figure Adsorption isotherms for dyes onto 0.3 CoFe-MOF 3.7 Adsorption Mechanism Based on the factors affecting dye adsorption capacity from Fe-MOF doped Co materials, an adsorption mechanism has been proposed to better understand the mechanism of cationic and anionic dyes The MB and RhB or MO and CR dyes usually exist as cations and anions Therefore, the electrostatic interaction between 0.3 CoFe-MOF and the dye was used to account for the adsorption Based on the point charge of the 0.3 CoFe-MOF material surface when the pH values are greater than pHpzc, the 0.3 CoFe-MOF surface is negatively charged, so electrostatic repulsions will appear with the dye molecules Cations increase the adsorption capacity [31] In addition, the specific structure of the dye molecules is a factor affecting the adsorption process by the π-π interaction between the benzene rings in the dye molecule with 0.3 CoFe-MOF [32] One of the factors that directly affects the ability to remove dyes is the molecular size and charge of dyes Specifically, MO contains fewer aromatic rings than CR, and the MO anion has a smaller negative charge than CR or the linearity in the molecular formula of the MB cation in order to enhance the adsorption ability to reach the available sites on the MOF easy way [14] Besides, the porosity of the material facilitated dye adsorption in the liquid phase due to the pore-filling interaction [33] 3.8 Adsorption of Mixed Organic Dyes As previous studies have reported that effective dye adsorption from contaminated water depends on the charge of the MOF organic framework and the charge of the selected dyes and the cationic framework often exhibited better adsorption of anionic dyes and vice versa [14], the present study has employed 0.3 CoFe-MOF material as the adsorbent to remove the mixtures of cationic and anionic dyes in wastewater The dye mixture is assumed experimentally as cationic and anionic dye systems (MB + MO), anionic dyes (MO + CR), and cationic dyes (MB + RhB) (Figure 9) Processes 2022, 10, 1352 12 of 14 Figure Dye-mixed adsorption spectra over time of 0.3 CoFe-MOF (A) RhB and MB, (B) MO and CR, and (C) MO and MB The adsorption process was performed following similar procedure, in which 0.01 g/L of 0.3 CoFe-MOF sample was added to an Erlenmeyer flask containing 50 mL of dye solution at a initial concentration of 30 mg/L and concentrated on a Jeiotech thermostatic shaker After fixed periods of time, the color change of the dye was evaluated using the UV-Vis spectrum at various wavelength Results have shown that the dye was adsorbed on the Co-doped Fe-MOF efficiently Based on Figure 9, the dye adsorption spectra were rapidly removed after 10 for all three mixed systems and the dye concentration continued to decline with increasing adsorption time At 664 nm (MB) and 465 nm (MO), the maximum adsorption of both MB and MO was recorded as 70% and 81% at 30 min, respectively On the other hand, in the mixed system of cationic dyes with a maximum adsorption at 554 nm (RhB) and 664 (MB), the removal efficiency was 56% for RhB and 67% for MB During the 30-min reaction time of the mixed anionic dye system, the MO and CR adsorption peaks also occurred, with dye removal efficiencies of 77% (MO) and 80% (CR) When further extending the time to 240 min, the adsorption efficiency of the MB and MO mixture tended to reduce by 58% and 69%, respectively Similarly, the adsorption efficiency continued to increase in the mixed system of cations (74% MB and 80% RhB) and anions (85% MO and 89% CR) The spectral scanning data demonstrated that the use of 0.3 CoFe-MOF as an adsorbent in the dye mixture had effective removal on both cationic and anionic dyes From the analysis results, it can be seen that the adsorption is affected by the charge, structure, and size of the dye [34] For example, the CR anionic dye solution is separated from the CR and MB, CR and MO, CR and RB solution systems after two minutes in the dark by Mn(II)-MOF High CR removal efficiency is superior to specific residual dye RB (10%) < MO (11%) < MB (18%) < CR (98%) [35] Liu Yang et al (2019) successfully separated a mixture of cationic (Rho 6G and MB) and anionic (AF and MO) dyes using Cd-MOF materials The MO anionic dye was efficiently adsorbed by 100 mg of Cd-MOF from an aqueous solution containing MO and Rho 6G Similarly, in the MB and AF dye systems, the MB cationic dye is hardly adsorbed and leaves the column [36] Conclusions An organic-inorganic hybrid of metal salts and terephthalate acid has been successfully synthesized by reacting iron (III) chloride with terephthalic acid in N’N-dimethylformamide solvent by solvothermal method Based on the synthesis conditions on the bimetallic organic framework, CoFe-MOF was successfully synthesized at different ratios with high Processes 2022, 10, 1352 13 of 14 order and crystallinity The synthesized CoFe-MOF has a structural morphology, including polyhedral bars with a relatively uniform surface and contains small capillaries inside with a pore-like structure of about 2.2 nm in diameter and an area of about 2.2 nm The specific surface area of the composite sample was 280.9 m2 /g Among four tested dyes (i.e., MB, RhB, MO, and CR), the best adsorption capacity of 0.3 CoFe-MOF was obtained upon removing MB dye (562.1 mg/g) and remained stable after re-uses Besides, 0.3 CoFe-MOF rapidly showed the highest removal efficiency towards the mixture of MO and MB within 30 These findings can be considered an essential platform for improving the efficiency of pigment adsorption to combat water pollution issues Author Contributions: Writing—original draft preparation, T.K.N.T and T.K.O.N.; data curation, N.B.H and T.C.Q.N.; conceptualization, N.B.H and C.P.K.P.; methodology, L.D.T and T.K.N.T.; formal analysis, T.C.Q.N., L.D.T and C.P.K.P.; writing—review and editing T.K.O.N and T.K.N.T All authors have read and agreed to the published version of the manuscript Funding: The study was supported by The Youth Incubator for Science and Technology Programe, managed by Youth Development Science and Technology Center—Ho Chi Minh Communist Youth Union and Department of Science and Technology of Ho Chi Minh City, the contract number is No 10/2021/HÐ-KHCNT-VƯ Institutional Review Board Statement: Not applicable Informed Consent Statement: Not applicable Data Availability Statement: All the data is available within the manuscript Conflicts of Interest: The authors declare no conflict of interest References 10 11 12 13 14 Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.Ö.; Snurr, R.Q.; O’Keeffe, M.; Kim, J Ultrahigh Porosity in Metal-Organic Frameworks Science 2010, 329, 424–428 [CrossRef] [PubMed] Choi, S.; Cha, W.; Ji, H.; Kim, D.; Lee, H.J.; Oh, M Synthesis of Hybrid Metal-Organic Frameworks of {FeX My M0 1-x-y }-Y}-MIL-88B and the Use of Anions to Control Their Structural Features Nanoscale 2016, 8, 16743–16751 [CrossRef] [PubMed] Chen, L.; Wang, H.F.; Li, C.; Xu, Q Bimetallic Metal-Organic Frameworks and Their Derivatives Chem Sci 2020, 11, 5369–5403 [CrossRef] [PubMed] Li, X.; Guo, W.; Liu, Z.; Wang, R.; Liu, H Fe-Based MOFs for Efficient Adsorption and Degradation of Acid Orange in Aqueous Solution via Persulfate Activation Appl Surf Sci 2016, 369, 130–136 [CrossRef] Shen, L.; Song, H.; Wang, C Metal-Organic Frameworks Triggered High-Efficiency Li Storage in Fe-Based Polyhedral Nanorods for Lithium-Ion Batteries Electrochim Acta 2017, 235, 595–603 [CrossRef] Van Tran, T.; Nguyen, D.T.C.; Le, H.T.N.; Vo, D.V.N.; Doan, V.D.; Dinh, V.P.; Nguyen, H.T.T.; Nguyen, T.D.; Bach, L.G AminoFunctionalized MIL-88B(Fe)-Based Porous Carbon for Enhanced Adsorption toward Ciprofloxacin Pharmaceutical from Aquatic Solutions Comptes Rendus Chim 2019, 22, 804–812 [CrossRef] Nguyen, V.; Nguyen, T.; Bach, L.; Hoang, T.; Bui, Q.; Tran, L.; Nguyen, C.; Vo, D.-V.; Do, S Effective Photocatalytic Activity of Mixed Ni/Fe-Base Metal-Organic Framework under a Compact Fluorescent Daylight Lamp Catalysts 2018, 8, 487 [CrossRef] Ngan, T.T.K.; Thuy, T.B.; van Tan, L.; Nguyen, T.T Iron-Manganese Bimetallic-Organic Framework as a Photocatalyst for Degradation of Rhodamine B Organic Dye under Visible Light Bull Chem React Eng Catal 2021, 16, 916–924 [CrossRef] Ngan Tran, T.K.; Ho, H.L.; Nguyen, H.V.; Tran, B.T.; Nguyen, T.T.; Thi Bui, P.Q.; Bach, L.G Photocatalytic Degradation of Rhodamine B in Aqueous Phase by Bimetallic Metal-Organic Framework M/Fe-MOF (M = Co, Cu, and Mg) Open Chem 2022, 20, 52–60 [CrossRef] Burrows, A.D Mixed-Component Metal-Organic Frameworks (MC-MOFs): Enhancing Functionality through Solid Solution Formation and Surface Modifications CrystEngComm 2011, 13, 3623–3642 [CrossRef] Abednatanzi, S.; Gohari Derakhshandeh, P.; Depauw, H.; Coudert, F.X.; Vrielinck, H.; Van Der Voort, P.; Leus, K Mixed-Metal Metal-Organic Frameworks Chem Soc Rev 2019, 48, 2535–2565 [CrossRef] Masoomi, M.Y.; Morsali, A.; Dhakshinamoorthy, A.; Garcia, H Mixed-Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design Angew Chem Int Ed 2019, 58, 15188–15205 [CrossRef] Molavi, H.; Hakimian, A.; Shojaei, A.; Raeiszadeh, M Selective Dye Adsorption by Highly Water Stable Metal-Organic Framework: Long Term Stability Analysis in Aqueous Media Appl Surf Sci 2018, 445, 424–436 [CrossRef] Mantasha, I.; Saleh, H.A.M.; Qasem, K.M.A.; Shahid, M.; Mehtab, M.; Ahmad, M Efficient and Selective Adsorption and Separation of Methylene Blue (MB) from Mixture of Dyes in Aqueous Environment Employing a Cu(II) Based Metal Organic Framework Inorganica Chim Acta 2020, 511, 119787 [CrossRef] Processes 2022, 10, 1352 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 14 of 14 Deng, S.Q.; Mo, X.J.; Zheng, S.R.; Jin, X.; Gao, Y.; Cai, S.L.; Fan, J.; Zhang, W.G Hydrolytically Stable Nanotubular Cationic Metal-Organic Framework for Rapid and Efficient Removal of Toxic Oxo-Anions and Dyes from Water Inorg Chem 2019, 58, 2899–2909 [CrossRef] Akansha, K.; Chakraborty, D.; Sachan, S.G Decolorization and Degradation of Methyl Orange by Bacillus Stratosphericus SCA1007 Biocatal Agric Biotechnol 2019, 18, 101044 [CrossRef] Naseem, K.; Farooqi, Z.H.; Begum, R.; Irfan, A Removal of Congo Red Dye from Aqueous Medium by Its Catalytic Reduction Using Sodium Borohydride in the Presence of Various Inorganic Nano-Catalysts: A Review J Clean Prod 2018, 187, 296–307 [CrossRef] Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation Water 2022, 14, 242 [CrossRef] Laramie, M.D.; Smith, M.K.; Marmarchi, F.; McNally, L.R.; Henary, M Small Molecule Optoacoustic Contrast Agents: An Unexplored Avenue for Enhancing in Vivo Imaging Molecules 2018, 23, 2766 [CrossRef] Saigl, Z.M Various Adsorbents for Removal of Rhodamine B Dye: A Review Indones J Chem 2021, 21, 1039 [CrossRef] Ding, L.; Zeng, M.; Wang, H.; Jiang, X.B Synthesis of MIL-101-Derived Bimetal–Organic Framework and Applications for Lithium-Ion Batteries J Mater Sci Mater Electron 2021, 32, 1778–1786 [CrossRef] Xie, Q.; Li, Y.; Lv, Z.; Zhou, H.; Yang, X.; Chen, J.; Guo, H Effective Adsorption and Removal of Phosphate from Aqueous Solutions and Eutrophic Water by Fe-Based MOFs of MIL-101 Sci Rep 2017, 7, 3316 [CrossRef] Guan, H.; Wang, N.; Feng, X.; Bian, S.; Li, W.; Chen, Y FeMn Bimetallic MOF Directly Applicable as an Efficient Electrocatalyst for Overall Water Splitting Colloids Surf Physicochem Eng Asp 2021, 624, 126596 [CrossRef] Chen, L.; Zuo, X.; Zhou, L.; Huang, Y.; Yang, S.; Cai, T.; Ding, D Efficient Heterogeneous Activation of Peroxymonosulfate by Facilely Prepared Co/Fe Bimetallic Oxides: Kinetics and Mechanism Chem Eng J 2018, 345, 364–374 [CrossRef] Wu, Y.; Liu, Z.; Bakhtari, M.F.; Luo, J Preparation of GO/MIL-101(Fe,Cu) Composite and Its Adsorption Mechanisms for Phosphate in Aqueous Solution Environ Sci Pollut Res 2021, 28, 51391–51403 [CrossRef] Yang, L.X.; Yang, J.C.E.; Fu, M.L Magnetic CoFe2O4 Nanocrystals Derived from MIL-101 (Fe/Co) for Peroxymonosulfate Activation toward Degradation of Chloramphenicol Chemosphere 2021, 272, 129567 [CrossRef] Wang, Z.; Wu, C.; Zhang, Z.; Chen, Y.; Deng, W.; Chen, W Bimetallic Fe/Co-MOFs for Tetracycline Elimination J Mater Sci 2021, 56, 15684–15697 [CrossRef] Shakly, M.; Saad, L.; Seliem, M.K.; Bonilla-Petriciolet, A.; Shehata, N New Insights into the Selective Adsorption Mechanism of Cationic and Anionic Dyes Using MIL-101(Fe) Metal-Organic Framework: Modeling and Interpretation of Physicochemical Parameters J Contam Hydrol 2022, 247, 103977 [CrossRef] Van Tran, T.; Nguyen, D.T.C.; Le, H.T.N.; Bach, L.G.; Vo, D.V.N.; Dao, T.U.T.; Lim, K.T.; Nguyen, T.D Effect of Thermolysis Condition on Characteristics and Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) Absorbability of Fe-MIL-88B-Derived Mesoporous Carbons J Environ Chem Eng 2019, 7, 103356 [CrossRef] Hejazi, R.; Mahjoub, A.R.; Khavar, A.H.C.; Khazaee, Z Fabrication of Novel Type Visible-Light-Driven TiO2@ MIL-100 (Fe) Microspheres with High Photocatalytic Performance for Removal of Organic Pollutants J Photochem Photobiol Chem 2020, 400, 112644 [CrossRef] Lin, S.; Song, Z.; Che, G.; Ren, A.; Li, P.; Liu, C.; Zhang, J Adsorption Behavior of Metal–Organic Frameworks for Methylene Blue from Aqueous Solution Microporous Mesoporous Mater 2014, 193, 27–34 [CrossRef] Paiman, S.H.; Rahman, M.A.; Uchikoshi, T.; Abdullah, N.; Othman, M.H.D.; Jaafar, J.; Abas, K.H.; Ismail, A.F Functionalization Effect of Fe-Type MOF for Methylene Blue Adsorption J Saudi Chem Soc 2020, 24, 896–905 [CrossRef] Haque, E.; Jun, J.W.; Jhung, S.H Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution with a Metal-Organic Framework Material, Iron Terephthalate (MOF-235) J Hazard Mater 2011, 185, 507–511 [CrossRef] [PubMed] Kaur, H.; Kumar, R.; Kumar, A.; Krishnan, V.; Koner, R.R Trifunctional Metal-Organic Platform for Environmental Remediation: Structural Features with Peripheral Hydroxyl Groups Facilitate Adsorption, Degradation and Reduction Processes Dalton Trans 2019, 48, 915–927 [CrossRef] Liu, J.; Zhang, X.-Y.; Hou, J.-X.; Liu, J.-M.; Jing, X.; Li, L.-J.; Du, J.-L Functionalized Mn(II)-MOF Based on Host-Guest Interaction for Selective and Rapid Capture of Congo Red from Water J Solid State Chem 2019, 270, 697–704 [CrossRef] Yang, L.; Liu, Y.-L.; Liu, C.-G.; Fu, Y.; Ye, F A Cationic Metal-Organic Framework for Dye Adsorption and Separation Based on Column-Chromatography J Mol Liq 2020, 300, 112311 [CrossRef] Synthesis of bimetallic organic framework material M/Fe-MOF (M: Ni, Cu, Mn) and testing to remove toxic dyes in water environment Thi Kim Ngan Tran1,2,*, Cao Phuong Khanh Phan3, Thi Cam Quyen Ngo1,2, Ngoc Bich Hoang1,2, Le Dang Truong1,2, Thi Kim Oanh Nguyen1,2 Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam; khanh.phan_stayfresh@hcmut.edu.vn *Corresponding ARTICLE INFO author: nganttk@ntt.edu.vn ABSTRACT DOI: 10.46223/HCMCOUJS… The treatment and removal of toxic dyes in the aquatic environment are considered an urgent issue today In addition to the development of traditional materials, a new material, a bimetallic organic framework, has received the attention of Received: many researchers because of its outstanding properties and Revised: potential in high porosity and high porosity applications Accepted: surface rich in functional groups On the basis of the above practices, Fe-MOF-based metallic materials modified with Ni, Cu, and Mn were synthesized by the solvothermal method Keywords: Evaluation of the materials from XRD, SEM, FT-IR diffraction bimetallic organic framework, measurements, and BET surface area measurements From solvothermal, adsorption, there, draw conclusions and evaluate the possibility of organic dyes successful synthesis in the fabrication of new MOF materials The adsorption capacity of the materials was preliminarily evaluated through the adsorption process of organic dyes The results of structural characterization showed that the modification with metal ions did not change the original crystal structure of the material as well as the partial replacement of the second metal ion in the lattice node The material after a modification has a large specific surface charge, and at the same time increases the ability to remove dyes from the aqueous medium The successful study of the topic will be the basis for the diversification of methods and materials to treat environmental pollution Introduction Metal-organic framework materials (MOFs) are made up of metal or metal oxides and are connected by polyorganic organic ligands to form a lattice, leaving large voids inside, which is a lattice multi-dimensional, nano-sized space with surface areas that can reach over 6000 m2/g (Furukawa et al., 2010) Different from other porous solid materials such as activated carbon, zeolites, with stable structure, high porosity and large specific surface area, MOFs are currently attracting the attention of scientists around the world as well as in water because of their superior and selective adsorption capacity (Burrows, 2011; Chen et al., 2020; Dhakshinamoorthy et al., 2016) It is difficult to predict the final structure of MOFs products due to the mobility of different types of covalent bonds and different organic bridges with metals (Dhakshinamoorthy et al., 2016) In addition, with outstanding properties, bimetallic MOFs with adjustable components and structures have provided outstanding performance in many applications including catalysis, gas adsorption, energy conversion, storage, and luminescence sensors (Guo et al., 2020; Jia et al., 2013; Li et al., 2020; Ngan Tran et al., 2022; Q Wang et al., 2019) Furthermore, bimetallic MOFs can be used as precursors to synthesize a variety of nanostructured materials such as metal compounds, MOF composites, and carbon composites (Y Wu et al., 2021) Specifically, Qiangshun et al (2020) synthesized bimetallic materials of Ni-doped Fe-BDC to improve the specific surface area and pore volume and reduce surface zeta potential to increase adsorption capacity for both MB and MO dyes (Q Wu et al., 2021) The potential of the bimetallic catalyst FexCu1-x (BDC) in antibiotic treatment is demonstrated by the removal of 100% of sulfamethoxazole (SMX) within 120 min, which is higher than the SMX removal efficiency compared with Fe-BDC monometallic (Tang & Wang, 2020) In 2022, author Ngan et al research group used the solvent heat method to synthesize M/Fe-MOF bimetallic materials (M: Co, Mg, and Cu) and evaluated the photoactivity catalyzed in the degradation reaction of organic pigment rhodamine B (RhB) under visible light (Ngan Tran et al., 2022) Hong-Tham et al (2021) removed Rhodamine B (RhB) dye under visible light by NH 2-MIL-125 (Ti) bimetallic heterogeneous photocatalysts with the ratio Mn+/Ti4+ (Mn+: Ni2+, Co2+, and Fe3+) (Thi et al., 2021) Gu et al (2018) have shown that changing the Fe:Mg molar ratio can lead to the alteration of structural features related to the length/diameter ratio and single-cell parameters and the surface area increased from 57 m2.g-1 (Fe-MIL-88B) to 360 m2.g-1 (Fe/Mg-MIL-88B) (Gu et al., 2019) Therefore, in this study, the combination of Fe(III) and Ni(II), Cu(II), or Mn(II) metal salts bound to organic bridges were synthesized based on thermal method solvent in the presence of DMF The structural properties of the materials were analyzed based on modern physicochemical methods (XRD, FT-IR, SEM, and BET) From there, the bimetallic material was preliminarily evaluated for the adsorption of organic dyes Materials and methods 2.1 Chemicals This Iron (III) chloride hexahydrate (FeCl3.6H2O), Copper(II) nitrate trihydrate (Cu(NO3)2.3H2O), Nikel nitrate hexahydrate (Ni(NO3)2.6H2O), Manganese Chloride (MnCl2.6H2O) are obtained from Xilong – China N,N-Dimethylmethanamide ((CH3)2NCHO) from Macron-Fisher, Methylene Blue (C37H27N3Na2O9S3) from Sigma-Aldrich All chemicals were used without further purification 2.2 Synthesis of bimetallic materials M/Fe-MOF M/Fe-MOF bimetallic materials (M: Ni, Cu, and Mn) were synthesized based on previous research by (Ding et al., 2021) with correction The reaction process occurs in a hydrothermal vessel (Teflon), a mixture of metal salts combined with organic ligands in the presence of DMF solvent, performed based on the solvent heat method Specifically, a mixture of 10 mmol FeCl3.6H2O, Co(NO3)2.6H2O, and mmol 1,4 benzenedicarboxylic acid dissolved in 60 mL of DMF for 30 minutes at room temperature The homogenized mixture was placed into a Teflon tube covered with stainless steel and heated to 150ºC for 15 h The solid material samples were recovered by centrifugation at 6000 rpm for 10 minutes and further cleaned with DMF and ethanol solvents The final material sample was dried at 120°C overnight 2.3 Characteristics The materials were evaluated for structural characterization through methods such as Xray diffraction (XRD) which were analyzed on the D8 Advance Bruker instrument (Germany) using CuK𝛼 radiation at a 2θ scanning angle from 10 to 35º Infrared spectroscopy method FTIR was measured on Nicolet 6700 - Thermo Fisher Scientific device (USA) to identify organic compounds and study the structure SEM electron microscopy images were recorded on a machine S4800 of JEOL (Japan) The N adsorption-desorption isotherms determine the capillary characteristics as well as the specific surface area of the materials studied on Micromeritics 2020 (USA) Analytical methods were performed at Vietnam Institute of Science and Technology, No 18 Hoang Quoc Viet, Cau Giay, Hanoi 2.4 Methylene Blue dye adsorption process The adsorption capacity of modified material samples was evaluated based on the ability to remove MB pigment in an aqueous solution The experimental process was carried out in a pH - 12 environment, an amount of material 0.002 - 0.03 g/L was added to erlenmeyer containing 50 mL of dye solution at an initial concentration of 30 - 300 mg/L After the specified time (10– 240 min) mL of the solution was removed and centrifuged (6000 rpm, min) to remove solids The dye concentration was determined by the UV-Vis method on a Thermo apparatus at 664 nm Result and discussion 3.1 Characterizations The crystal structure of the bimetallic material M/Fe-MOF was determined based on the XRD method, the crystallinity is shown in spectrogram Figure a In general, the modified samples all show peaks that are almost similar to those of the original Fe-MOF, showing that bimetallic modified materials have been successfully synthesized based on Fe-MOF The shift of some peaks to lower and higher angles is mainly due to the ionic radii of different metals The Fe-MOF data show high intensities at 12.58º and 18.9º, respectively, for the high intensities of MnFe-MOFs (11.09º and 21.58º), CuFe-MOFs (10.35º and 16.5º) and NiFe-MOFs (11.75º and 18.98º) The slight difference in peak positions and intensities of the XRD patterns of the other frames is due to the different equivalences of the Fe-MOF framework when Fe3+ is partially substituted by another metal ion (C Wu et al., 2021) The bonds in the samples of CuFe-MOF, NiFe-MOF, and MnFe-MOF materials were analyzed based on the schematic diagram in Figure b The results show that the modified materials all have peaks that are nearly the same and similar to the characteristic peaks of the original Fe-MOF The peak oscillation 3700 - 3000 cm-1 is the oscillation of the O-H bond of the water molecules adsorbed on the surface of the material The 1598 - 1373 cm-1 adsorption peaks characterize the symmetric and asymmetric vibrations of the carboxylic group of the BDC organic bridge bound to the central metal and have shifted to a lower wavelength than compared with Fe-MOF The C-H bond vibrations of the benzene rings are characterized by peaks of 753 – 749 cm-1 Characteristic for the Fe-O bond at the peaks 554 – 527 cm-1 In addition, the peak appearance of 2945 cm-1 at weak intensity indicates that the DMF has not been completely eliminated in the pores The change in intensity and position of the peaks may be due to a partial change of Fe3+ metal ion by a second metal ion in the lattice framework (Z Wang et al., 2021) Figure 1: XRD(a) and FT-IR (b) diagram of bimetallic Fe MOF Figure shows that the second metal present in the lattice leads to a change in the grain size, morphology, or grain distribution of the materials compared with the octahedral structure of the Fe-MOF monometallic pattern The results show that the samples of Cu/Fe-MOF, Ni/Fe−MOF, and Mn/Fe−MOF have surface morphology with large, uneven grain size, partially deformed crystals, and phenomenon clumps of particles This phenomenon is completely consistent with previous reports, the final morphology of Fe-MOF can be influenced by the incorporation of the second metal element (Tang & Wang, 2020) The Nitrogen adsorption-desorption isotherm (BET) used to determine the capillary structure is shown in Figure In comparison with the original Fe-MOF with a surface area of 32.8 m2/g and size of 7.9 nm pore, it can be seen that the doping of Cu, Mn, and Ni metals leads to significant changes The N2 adsorption and desorption curve belong to type II (according to IUPAC classification) characteristic for the presence of micro and small capillaries The BETspecific surface area has a difference between Fe-MOF bimetallic materials with different metal ion centers, specifically Cu/Fe-MOF (33.3 m2/g), Mn/Fe-MOF (32.3 m2) /g) and Ni/Fe-MOF (33.7 m2/g) Some previous publications showed that when adding Cu2+ metal ions, the specific surface area of MIL-101 (Fe) increased significantly from 510.66 m2/g to 747.75 m2/g (Y Wu et al., 2021) Figure 2: SEM image of materials when changing the crystallinity ratio of Fe-MOF bimetallic materials Figure 3: N2 adsorption-desorption isotherm curves of M/Fe-MOF: (a) Fe-MOF, (b) NiFe-MOF, (c) CuFe-MOF, and (d) MnFe-MOF Table BET data of Fe-MOF based bimetallic samples Samples BET surface area (m2/g) Pore volume (cm3/g) Pore size (nm) Fe-MOF 32.8 0.065 7.95 NiFe-MOF 33.7 0.057 6.76 CuFe-MOF 33.3 0.179 21.58 MnFe-MOF 32.3 0.049 6.08 3.2 MB adsorption capacity of M/Fe-MOF materials (M: Ni, Mn, and Cu) Preliminary evaluation experiments on dye adsorption capacity of bimetallic samples at experimental conditions similar to bimetallic modified samples with Co 2+ ions The adsorption results are presented in Figure 4, on the same synthesis conditions, NiFe-MOF and CuFe-MOF exhibit superior adsorption capacity compared to Fe-MOF and MnFe-MOF Specifically, the best MB adsorption capacity of CuFe-MOF (201.2 mg/g), NiFe-MOF (267.7 mg/g), and MnFeMOF (133.1 mg/g) compared with Fe-MOF (147.8 mg/g) Based on the evaluation results of MnFe-MOF, the adsorption capacity is lower than that of Fe-MOF However, RhB adsorbed very little despite the same cationic dye, based on this result it can be seen that the adsorption capacity depends not only on the structure of the adsorbent but also on the length of the structure bamboo dye This is consistent with the preliminary assessment via SEM images and specific surface area analysis of the materials On the other hand, the dye adsorption capacity depends on the ratio between the two metals in the lattice or the central metal and the substitution metal Yue Gug et al (2018) studied the crystal formation of the MIL−88B(Fe) material structure by changing the ratio of Mg2+/Fe3+ and applied it to the removal of Arsenic metal present in wastewater (Gu et al., 2019) Figure 4: The dye adsorption process of M/Fe MOF (M: Mn, Cu, and Ni) Conclusions Bimetallic Fe-MOF materials modified with Ni, Cu, and Mn were successfully synthesized by the solvent heat method The structure of the materials was evaluated by modern analytical methods such as XRD, SEM, FT-IR, and isotherm of nitrogen adsorption-desorption The presence of the second metal in the lattice framework of Fe-MOF materials increases the ability to remove dyes in an aqueous medium through the adsorption process The adsorption capacity of organic dyes of NiFe-MOF and CuNi-MOF was higher than that of single metal FeMOF, while MnFe-MOF gave lower results Therefore, it is necessary to conduct more studies on the change of molar ratios between the bimetallic centers in order to find the best materials for the adsorption process, opening up the potential application of the material in the field of substance treatment Toxic organic colors cause environmental pollution ACKNOWLEDGEMENTS The study was supported by The Youth Incubator for Science and Technology Programe, man-aged by Youth Development Science and Technology Center – Ho Chi Minh Communist Youth Union and Department of Science and Technology of Ho Chi Minh City, the contract number is No 10/2021/HĐ-KHCNT-VƯ References Burrows, A D (2011) Mixed-component metal-organic frameworks (MC-MOFs): Enhancing functionality through solid solution formation and surface modifications CrystEngComm, 13(11), 3623–3642 https://doi.org/10.1039/c0ce00568a Chen, L., Wang, H F., Li, C., & Xu, Q (2020) Bimetallic metal-organic frameworks and their derivatives Chemical Science, 11(21), 5369–5403 https://doi.org/10.1039/d0sc01432j Dhakshinamoorthy, A., Asiri, A M., & Garcia, H (2016) Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts Catalysis Science and Technology, 6(14), 5238–5261 https://doi.org/10.1039/c6cy00695g Ding, L., Zeng, M., Wang, H., & Jiang, X B (2021) Synthesis of MIL-101-derived bimetal–organic framework and applications for lithium-ion batteries Journal of Materials Science: Materials in Electronics, 32(2), 1778–1786 https://doi.org/10.1007/s10854-020-04946-8 Furukawa, H., Ko, N., Go, Y B., Aratani, N., Choi, S B., Choi, E., Yazaydin, A Ö., Snurr, R Q., O’Keeffe, M., Kim, J., & Yaghi, O M (2010) Ultrahigh porosity in metal-organic frameworks Science, 329(5990), 424–428 https://doi.org/10.1126/science.1192160 Gu, Y., Xie, D., Wang, Y., Qin, W., Zhang, H., Wang, G., Zhang, Y., & Zhao, H (2019) Facile fabrication of composition-tunable Fe/Mg bimetal-organic frameworks for exceptional arsenate removal Chemical Engineering Journal, 357, 579–588 https://doi.org/10.1016/j.cej.2018.09.174 Guo, H., Su, S., Liu, Y., Ren, X., & Guo, W (2020) Enhanced catalytic activity of MIL-101(Fe) with coordinatively unsaturated sites for activating persulfate to degrade organic pollutants Environmental Science and Pollution https://doi.org/10.1007/s11356-020-08316-z Research, 27(14), 17194–17204 Jia, J., Xu, F., Long, Z., Hou, X., & Sepaniak, M J (2013) Metal-organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing of MeHg+ Chemical Communications, 49(41), 4670–4672 https://doi.org/10.1039/c3cc40821c Li, J., Wang, L., Liu, Y., Zeng, P., Wang, Y., & Zhang, Y (2020) Removal of berberine from wastewater by MIL-101(Fe): Performance and mechanism ACS Omega, 5(43), 27962– 27971 https://doi.org/10.1021/acsomega.0c03422 Ngan Tran, T K., Ho, H L., Nguyen, H V., Tran, B T., Nguyen, T T., Thi Bui, P Q., & Bach, L G (2022) Photocatalytic degradation of Rhodamine B in aqueous phase by bimetallic metalorganic framework M/Fe-MOF (M = Co, Cu, and Mg) Open Chemistry, 20(1), 52–60 https://doi.org/10.1515/chem-2021-0110 Tang, J., & Wang, J (2020) Iron-copper bimetallic metal-organic frameworks for efficient Fentonlike degradation of sulfamethoxazole under mild conditions Chemosphere, 241, 125002 https://doi.org/10.1016/j.chemosphere.2019.125002 Thi, H T N., Thi, K N T., Hoang, N B., Tran, B T., Do, T S., Phung, C S., & Thi, K O N (2021) Enhanced degradation of rhodamine b by metallic organic frameworks based on nh2mil-125(Ti) under visible light Materials, 14(24) https://doi.org/10.3390/ma14247741 Wang, Q., Wei, C., Li, D., Guo, W., Zhong, D., & Zhao, Q (2019) FeNi-based bimetallic MIL-101 directly applicable as an efficient electrocatalyst for oxygen evolution reaction Microporous and Mesoporous Materials, 286, 92–97 https://doi.org/10.1016/j.micromeso.2019.05.040 Wang, Z., Wu, C., Zhang, Z., Chen, Y., Deng, W., & Chen, W (2021) Bimetallic Fe/Co-MOFs for tetracycline elimination Journal of Materials Science, 56(28), 15684–15697 https://doi.org/10.1007/s10853-021-06280-8 Wu, C., Zhang, X., Li, H., Xia, Z., Yu, S., Wang, S., & Sun, G (2021) Iron-based binary metalorganic framework nanorods as an efficient catalyst for the oxygen evolution reaction Chinese Journal of Catalysis, 42(4), 637–647 https://doi.org/10.1016/S1872- 2067(20)63686-5 Wu, Q., Siddique, M S., & Yu, W (2021) Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: Kinetics and mechanistic studies Journal of Hazardous Materials, 401(April), 123261 https://doi.org/10.1016/j.jhazmat.2020.123261 Wu, Y., Liu, Z., Bakhtari, M F., & Luo, J (2021) Preparation of GO/MIL-101(Fe,Cu) composite and its adsorption mechanisms for phosphate in aqueous solution Environmental Science and Pollution Research, 28(37), 51391–51403 https://doi.org/10.1007/s11356-021-14206-9