Nghiên cứu tổng hợp và khả năng lưu trữ khí của vật liệu k na beta cyclodextrin

76 1 0
Nghiên cứu tổng hợp và khả năng lưu trữ khí của vật liệu k na beta cyclodextrin

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ỦY BAN NHÂN DÂN TP.HCM THÀNH ĐỒN TP HỒ CHÍ MINH SỞ KHOA HỌC VÀ CÔNG NGHỆ TT PHÁT TRIỂN KH&CN TRẺ BÁO CÁO NGHIỆM THU NGHIÊN CỨU TỔNG HỢP VÀ KHẢ NĂNG LƯU TRỮ KHÍ CỦA VẬT LIỆU K, Na-BETA-CYCLODEXTRIN CHỦ NHIỆM ĐỀ TÀI: NGUYỄN KIM CHUNG THÀNH PHỐ HỒ CHÍ MINH THÁNG 08/2016 ỦY BAN NHÂN DÂN TP.HCM SỞ KHOA HỌC VÀ CÔNG NGHỆ BÁO CÁO NGHIỆM THU (Đã chỉnh sửa theo góp ý Hội đồng nghiệm thu) NGHIÊN CỨU TỔNG HỢP VÀ KHẢ NĂNG LƯU TRỮ KHÍ CỦA VẬT LIỆU K, Na-BETA-CYCLODEXTRIN CHỦ NHIỆM ĐỀ TÀI CƠ QUAN QUẢN LÝ CƠ QUAN CHỦ TRÌ (Ký tên/đóng dấu xác nhận) (Ký tên/đóng dấu xác nhận) THÀNH PHỐ HỒ CHÍ MINH THÁNG 08/2016 MỤC LỤC TĨM TẮT iii ABSTRACT iv DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT v DANH MỤC CÁC BẢNG vi DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ vii PHẦN MỞ ĐẦU BÁO CÁO NGHIỆM THU CHƯƠNG I: TỔNG QUAN VỀ ĐỀ TÀI 1.1 Vật liệu khung hữu cơ-kim loại (MOFs) 1.1.1 Giới thiệu 1.1.2 Các phương pháp tổng hợp MOFs 1.2 Ứng dụng MOFs lưu trữ khí 1.3 Tiềm vật liệu MOFs dựa ligand cyclodextrins (CD-MOFs)10 1.3.1 Giới thiệu cyclodextrins 10 1.3.2 Các nghiên cứu gần họ vật liệu CD-MOFs 11 1.3.3 Sơ lược vật liệu K, Na-beta-CD-MOFs 17 1.4 Tính cấp thiết sở khoa học đề tài 19 1.5 Ý nghĩa tính đề tài 21 CHƯƠNG II: NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 22 2.1 Nội dung nghiên cứu 22 2.2 Phương pháp nghiên cứu 22 2.3 Các quy trình thực nghiệm cụ thể 23 i 2.3.1 Tổng hợp vật liệu K Na-beta-CD-MOFs 23 2.3.1.1 Ảnh hưởng loại dung môi 24 2.3.1.2 Ảnh hưởng nguồn cung cấp ion kim loại 24 2.3.1.3 Ảnh hưởng tỷ lệ ion kim loại ligand 25 2.3.1.4 Ảnh hưởng thời gian tổng hợp 25 2.3.1.5 Ảnh hưởng nhiệt độ hoạt hóa 25 2.3.2 Khảo sát khả lưu trữ khí CD-MOFs tổng hợp 25 2.3.3 Khảo sát khả tái sử dụng CD-MOFs sau trình sử dụng 26 2.3.4 Khảo sát ảnh hưởng số điều kiện lưu trữ lên độ bền khả hấp phụ vật liệu 26 CHƯƠNG III: KẾT QUẢ VÀ BÀN LUẬN 27 3.1 Kết tổng hợp phân tích hố lý vật liệu K-beta-CD-MOF 27 3.1.1 Ảnh hưởng điều kiện tổng hợp 27 3.1.2 Kết phân tích đặc trưng hóa lý 32 3.2 Kết tổng hợp phân tích hố lý vật liệu Na-beta-CD-MOF 37 3.2.1 Ảnh hưởng điều kiện tổng hợp 37 3.2.2 Kết phân tích đặc trưng hóa lý 39 3.3 Kết khảo sát khả lưu trữ khí K-beta-CD-MOFs 4Error! Bookmark not defined 3.4 Kết khảo sát khả tái sử dụng K-beta-CD-MOFs 43 3.5 Kết khảo sát ảnh hưởng số điều kiện lưu trữ lên độ bền khả hấp phụ khí K-beta-CD-MOFs 44 CHƯƠNG IV: KẾT LUẬN VÀ KIẾN NGHỊ 48 TÀI LIỆU THAM KHẢO 49 PHỤ LỤC ii TÓM TẮT Lần Việt Nam, vật liệu tinh thể khung kim chứa -CD (-CD = cyclodextrin) với tên gọi HCMUT-1 tổng hợp thành công phương pháp bay khuếch tán dung môi Vật liệu kể kiểm tra đặc trưng hóa lý phương pháp phân tích đại như: nhiễu xạ tia X dạng bột (XRD), kính hiển vi điện tử quét (SEM), kính hiển vi điện tử truyền qua (TEM), phân tích nhiệt trọng lượng (TGA), đo bề mặt riêng phương pháp hấp phụ khí nitrogen áp suất thấp Kết XRD TGA cho thấy vật liệu HCMUT-1 có cấu trúc tinh thể đạt độ bền nhiệt tới 300oC Vật liệu cho thấy tiềm ứng dụng lưu trữ khí đặc biệt methane carbonic iii ABSTRACT For the first time, a crystalline coordinated organic framework containing -CD (CD = -cyclodextrin) HCMUT-1 was synthesized by a vapor diffusion method, and fully characterized by several techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermalgravimetric analysis (TGA), and nitrogen physisorption measurements The XRD pattern of the HCMUT-1 showed a highly crystallized structure The TGA spectra of material illustrated that the structure was thermally stable over 300°C This material performed relatively interesting behaviors, including gas adsorption and chemical stability iv DANH MỤC KÝ HIỆU, CÁC CHỮ VIẾT TẮT SEM Kính hiển vi điện tử quét (scanning electron microscopy) TEM Kính hiển vi điện tử truyền qua (transmission electron microscopy) XRD Nhiễu xạ tia X (X-ray diffraction) MOF Metal organic frameworks CD Cyclodextrin TGA Phân tích nhiệt trọng lượng (Thermogravimetric analysis) HPVA Phân tích hấp phụ áp suất cao (High Pressure Volumetric Analyzer) v DANH MỤC CÁC BẢNG Bảng 3.3 Kết khảo sát ảnh hưởng tỷ lệ phản ứng -CD KOH lên trình tổng hợp K--CD-MOF Bảng 3.2 Kết khảo sát ảnh hưởng nguồn cung cấp ion kim loại lên trình tổng hợp K--CD-MOF Bảng 3.1 Kết khảo sát ảnh hưởng loại dung môi khuếch tán lên trình tổng hợp K--CD-MOF vi DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1 Số lượng báo cáo vật liệu MOFs từ năm 1998-2008 12 Hình 1.2 Một số ligand hữu thường sử dụng tổng hợp MOFs Hình 1.3 Khả lưu trữ hydrogen số loại vật liệu MOFs khác điều kiện 77K 20 Hình 1.4 Mơ hình hấp phụ methane vật liệu HKUST-1 (MOF-199) 22 Hình 1.5 Khả hấp phụ CO2 số vật liệu MOFs khác 23 Hình 1.6 Khả hấp phụ CO2 vật liệu MOF-177 23 Hình 1.7 Cấu trúc , ,  CDs Hình 1.8 Polymer tạo thành từ , ,  CDs toluene-2,4-diisocyanate 28 Hình 1.9 Vật liệu CD-MOFs sở -cyclodextrin (-CD) 33 Hình 1.10 Cơ chế hấp phụ CO2 vật liệu sở -cyclodextrin 34 Hình 1.11 Độ hấp phụ CO2 CD-MOF-2 dạng tinh thể vơ định hình 34 Hình 1.12 Khả hấp phụ số loại khí CD-MOF-2 35 Hình 1.13 Quá trình tạo hạt nano gel dạng lập phương sở CD-MOFs 36 Hình 1.14 Tinh thể CD-MOF hình kim quan sát kính hiển vi (a) hình thành liên kết (b) vật liệu tạo nên -cyclodextrin RbOH 37 Hình 1.15 Cấu trúc vật liệu CD-MOFs có phối thêm đồng (a) khả hấp phụ CO2 (b) 38 Hình 1.16 Mơ hình mơ cấu trúc chuỗi xoắn trái Na--CD-MOF-1 39 vii Hình 1.17 Mơ hình mơ cấu trúc dạng chữ T lỗ xốp bán cầu vật liệu K, Na--CD-MOF-1 40 Hình 2.18 Mơ hình miêu tả trình tổng hợp CD-MOFs phương pháp khuếch tán bay dung mơi Hình 3.19 Đồ thị mô tả độ tan -CD hỗn dịch nước số dung môi hữu phân mol khác 44 Hình 3.20 Ảnh hưởng thời gian lên hiệu suất tổng hợp K--CD-MOF Hình 3.21 Ảnh chụp vật liệu K--CD-MOF kính hiển vi điện tử quét Hình 3.22 Ảnh chụp vật liệu K--CD-MOF kính hiển vi điện tử truyền qua Hình 3.23 Kết phân tích nhiễu xạ tia X vật liệu K--CD-MOF vừa tổng hợp xong (a), sau đuổi dung môi điều kiện thường (b), sau đuổi dung môi áp suất chân không, nhiệt độ phịng (c) sau đuổi dung mơi áp suất chân khơng 100oC (d) Hình 3.24 Đường hấp phụ giải hấp N2 K--CD-MOF 77K khoảng áp suất P/P0 = 0-1 Hình 3.25 Giản đồ phân bố lỗ xốp K--CD-MOF Hình 3.26 Kết phân tích nhiệt trọng lượng K--CD-MOF Bảng 3.4 Kết khảo sát ảnh hưởng số yếu tố lên trình tổng hợp vật liệu Na--CD-MOF Hình 3.27 Ảnh hưởng thời gian lên hiệu suất tổng hợp Na--CD-MOF Hình 3.28 Kết quan sát Na--CD-MOF kính hiển vi điện tử quét (trái) kính hiển vi điện tử truyền qua (phải) viii 21 Celzard, A.; Fierro, V., Preparing a Suitable Material Designed for Methane Storage:  A Comprehensive Report Energy & Fuels 2005, 19 (2), 573 22 He, Y.; Zhou, W.; Qian, G.; Chen, B., Methane storage in metal-organic frameworks Chemical Society Reviews 2014, 43 (16), 5657 23 Millward, A R.; Yaghi, O M., Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature Journal of the American Chemical Society 2005, 127 (51), 17998 24 Ashton, P R.; Boyd, S E.; Gattuso, G.; Hartwell, E Y.; Koeniger, R.; Spencer, N.; Stoddart, J F., A Novel Approach to the Synthesis of Some Chemically-Modified Cyclodextrins The Journal of Organic Chemistry 1995, 60 (12), 3898 25 Szejtli, J., Introduction and General Overview of Cyclodextrin Chemistry Chemical Reviews 1998, 98 (5), 1743 26 Szejtli, J., Medicinal Applications of Cyclodextrins Medicinal Research Reviews 1994, 14 (3), 353 27 Tiwari, G.; Tiwari, R.; Rai, A K., Cyclodextrins in delivery systems: Applications Journal of Pharmacy and Bioallied Sciences 2010, (2), 72 28 Xiao, P.; Dudal, Y.; Corvini, P F X.; Shahgaldian, P., Polymeric cyclodextrin-based nanoparticles: synthesis, characterization and sorption properties of three selected pharmaceutically active ingredients Polymer Chemistry 2011, (1), 120 29 Hashidzume, A.; Ito, F.; Tomatsu, I.; Harada, A., Macromolecular Recognition by Polymer-Carrying Cyclodextrins: Interaction of a Polymer Bearing Cyclodextrin Moieties with Poly(acrylamide)s Bearing Aromatic Side Chains Macromolecular Rapid Communications 2005, 26 (14), 1151 30 Morin-Crini, N.; Crini, G., Environmental applications of water-insoluble βcyclodextrin–epichlorohydrin polymers Progress in Polymer Science 2013, 38 (2), 344 31 Schmidt, B V K J.; Hetzer, M.; Ritter, H.; Barner-Kowollik, C., Complex macromolecular architecture design via cyclodextrin host/guest complexes Progress in Polymer Science 2014, 39 (1), 235 32 Kyzas, G Z.; Lazaridis, N K.; Bikiaris, D N., Optimization of chitosan and β-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption Carbohydrate Polymers 2013, 91 (1), 198 33 Smaldone, R A.; Forgan, R S.; Furukawa, H.; Gassensmith, J J.; Slawin, A M Z.; Yaghi, O M.; Stoddart, J F., Metal–Organic Frameworks from Edible Natural Products Angewandte Chemie International Edition 2010, 49 (46), 8630 51 34 Gassensmith, J J.; Furukawa, H.; Smaldone, R A.; Forgan, R S.; Botros, Y Y.; Yaghi, O M.; Stoddart, J F., Strong and Reversible Binding of Carbon Dioxide in a Green Metal–Organic Framework Journal of the American Chemical Society 2011, 133 (39), 15312 35 Forgan, R S.; Smaldone, R A.; Gassensmith, J J.; Furukawa, H.; Cordes, D B.; Li, Q.; Wilmer, C E.; Botros, Y Y.; Snurr, R Q.; Slawin, A M Z.; Stoddart, J F., Nanoporous Carbohydrate Metal–Organic Frameworks Journal of the American Chemical Society 2012, 134 (1), 406 36 Furukawa, Y.; Ishiwata, T.; Sugikawa, K.; Kokado, K.; Sada, K., Nano- and Microsized Cubic Gel Particles from Cyclodextrin Metal–Organic Frameworks Angewandte Chemie International Edition 2012, 51 (42), 10566 37 Gassensmith, J J.; Smaldone, R A.; Forgan, R S.; Wilmer, C E.; Cordes, D B.; Botros, Y Y.; Slawin, A M Z.; Snurr, R Q.; Stoddart, J F., Polyporous Metal-Coordination Frameworks Organic Letters 2012, 14 (6), 1460 38 Bagabas, A A.; Frasconi, M.; Iehl, J.; Hauser, B.; Farha, O K.; Hupp, J T.; Hartlieb, K J.; Botros, Y Y.; Stoddart, J F., γ-Cyclodextrin Cuprate SandwichType Complexes Inorganic Chemistry 2013, 52 (6), 2854 39 Lu, H.; Yang, X.; Li, S.; Zhang, Y.; Sha, J.; Li, C.; Sun, J., Study on a new cyclodextrin based metal–organic framework with chiral helices Inorganic Chemistry Communications 2015, 61, 48 40 Sha, J.-Q.; Wu, L.-H.; Li, S.-X.; Yang, X.-N.; Zhang, Y.; Zhang, Q.-N.; Zhu, P.-P., Synthesis and structure of new carbohydrate metal–organic frameworks and inclusion complexes Journal of Molecular Structure 2015, 1101, 14 41 Ma, H.; Li, X.; Yan, T.; Li, Y.; Liu, H.; Zhang, Y.; Wu, D.; Du, B.; Wei, Q., Sensitive Insulin Detection based on Electrogenerated Chemiluminescence Resonance Energy Transfer between Ru(bpy)32+ and Au Nanoparticle-Doped βCyclodextrin-Pb (II) Metal–Organic Framework ACS Applied Materials & Interfaces 2016, (16), 10121 42 Yang, J.-r.; Xie, S.-m.; Liu, H.; Zhang, J.-h.; Yuan, L.-m., Metal–Organic Framework InH(d-C10H14O4)2 for Improved Enantioseparations on a Chiral Cyclodextrin Stationary Phase in GC Chromatographia 2015, 78 (7), 557 43 Taddei, M.; Steitz, D A.; van Bokhoven, J A.; Ranocchiari, M., Continuous-Flow Microwave Synthesis of Metal–Organic Frameworks: A Highly Efficient Method for Large-Scale Production Chemistry – A European Journal 2016, 22 (10), 3245 44 Coleman, A W.; Munoz, M.; Chatjigakis, A K.; Cardot, P., Classification of the solubility behaviour of β-cyclodextrin in aqueous–CO-solvent mixtures Journal of Physical Organic Chemistry 1993, (12), 651 52 45 Rowsell, J L C.; Yaghi, O M., Metal–organic frameworks: a new class of porous materials Microporous and Mesoporous Materials 2004, 73 (1–2), 46 Nicolis, I.; Coleman, A W.; Charpin, P.; de Rango, C., A Molecular Composite Containing Organic and Inorganic Components—A Complex from βCyclodextrin and Hydrated Magnesium Chloride Angewandte Chemie International Edition in English 1995, 34 (21), 2381 PHỤ LỤC 53 Hội Xúc tác & Hấp phụ Việt Nam Cộng hịa xã hội chủ nghĩa Việt Nam Tạp chí Xúc tác & Hấp phụ Độc lập – Tự – Hạnh phúc Số: - Tập 5/TCXTHP-2016 -o0 - Hà Nội, ngày 19 tháng năm 2016 GIẤY XÁC NHẬN Ban biên tập (BBT) Tạp chí Xúc tác & Hấp phụ Việt Nam xác nhận nhận báo: “SYNTHESIS AND APPLICATIONS OF A GREEN COORDINATED ORGANIC FRAMEWORK CONTAINING B-CD (B-CYCLODEXTRIN) AS A POTENTIAL GAS ADSORBENT ” Nhóm tác giả: Nguyen Kim Chung, Nguyen Thanh Tung, Phan Thanh Son Nam Địa chỉ: Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Viet Nam Sau có ý kiến phản biện, BBT đồng ý đăng báo vào số 2/tập Tạp chí xuất vào tháng năm 2016 SYNTHESIS AND APPLICATIONS OF A GREEN COORDINATED ORGANIC FRAMEWORK CONTAINING -CD (-CYCLODEXTRIN) AS A POTENTIAL GAS ADSORBENT Nguyen Kim Chung, Nguyen Thanh Tung, Phan Thanh Son Nam* Ho Chi Minh City University of Technology, VNU-HCM Corresponding author: Prof Phan Thanh Son Nam Ho Chi Minh City University of Technology, VNU – HCM 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Viet Nam *Email: ptsnam@hcmut.edu.vn Tel: (08) 38647256 ext 5681 Fx: (08) 38637504 Abstract For the first time, a crystalline coordinated organic framework containing -CD (-CD = cyclodextrin) HCMUT-1 was synthesized by a vapor diffusion method, and fully characterized by several techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermalgravimetric analysis (TGA), Fourier transform infrared (FT-IR) and nitrogen physisorption measurements The XRD pattern of the HCMUT-1 showed a highly crystallized structure The TGA spectra of material illustrated that the structure was thermally stable over 300°C This material performed relatively interesting behaviors, including gas adsorption and chemical stability Keywords: metal-organic frameworks, gas adsorption, HCMUT-1, green material, cyclodextrin INTRODUCTION Metal-organic frameworks (MOFs) are crystalline materials which were constituted by metal ions or clusters coordinating with polytopic organic moieties considered as linkers [1-3] Though being well-known since the middle 1900s, MOFs actually became popular when Yaghi and coworkers established a new concept of reticular design [4] Then, these materials have attracted many attentions as evidenced by the massive amount of papers [5] In addition, some type of MOFs (as Fe(BTC), HKUST-1, ZIF-8, Al(OH)(BDC)) have been commercialized in large scale by leading chemical enterprise BASF under product name of Basolite TM [6] It is indicated that MOFs play a very essential role in chemistry and other fields In comparison with the other conventional inorganic solids including zeolites or silicas, MOFs offer several outstanding advantages such as controlled active site density, extraordinary chemical and thermal stability, ability to tune pore size, the ease of process ability, and structural diversity [7-9] Indeed, many efforts have been dedicated to the expanding of applications of MOFs in various sections including gas adsorption and separation [10-12], sensors [13, 14], catalysis [15, 16], ion exchange [17], light harvesting [18, 19] as well as drug delivery [20, 21] The most intriguing characteristic of porous MOFs is their exceptional specific surface area [22] (up to 6000 m2/g [23]) The unprecedentedly high surface areas of porous MOFs as well as the nanospace inside their frameworks allow them to efficiently trap various gas molecules as CO2 [24], H2 [25], CH4 [26]… etc This also pushes porous MOFs to the frontier of clean energy research, which has been particularly driven by the increasing threat of global warming together with decreasing stockpiles of fossil oil [12] However the need of using potentially toxic substances from non-renewable petrochemical material and transition metals for MOFs synthesis along with high cost and pollution control during the synthesis is one of the most challenging aspects for real-life applications Therefore, it is necessary that the preparing MOFs from natural products derive environmentally benign, clean synthetic procedures, and renewable materials Recently, green MOFs based on cyclodextrins (CDs), a family of carbohydrates obtained from microbiological processes, and alkali metal ions, have been extensively developed by Stoddart and co-workers [27] There are three main types of commercial CDs: alpha (α)CD has a 6- membered sugar ring molecule, beta (β)- CD has a 7- membered sugar ring molecule and gamma (γ)- CD an 8- membered sugar ring molecule [28] The capability of CDs to act as hosts and form complexes with hydrophobic guests enables them to be applied widely in a broad range of research activities related to supramolecular and pharmaceutical chemistry, agriculture – not least of all, drug delivery [29, 30] These MOFs are crystallized from water and alcohol (methanol or ethanol) [31, 32], which are not only inexpensive but also environmentally friendly in the sense that they can be fabricated from renewable sources that are themselves derived from water, carbon dioxide, and non-toxic metal salts [32] These materials have been proved as potential candidates for carbon dioxide adsorption [33, 34] However, symmetric and relative expensive CDs including -CD and -CD are required Crystalline complexes based on asymmetric CD -CD, on the other hand, have been rarely reported [35, 36] Herein, we report an example of coordinated organic framework based on -CD, as called HCMUT-1 The material performs interesting properties of chemical stability and gas adsorption EXPERIMENTAL 2.1 Materials and instrumentation All reagents and starting materials were obtained commercially from Sigma-Aldrich and Merck, and were used as received without any further purification unless otherwise noted Nitrogen physisorption measurements were conducted using a Micromeritics 2020 volumetric adsorption analyzer system Samples were pretreated by heating under vacuum at 150°C for 2h A Netzsch Thermoanalyzer STA 409 was used for thermogravimetric analysis (TGA) with a heating rate of 10°C/min from 20°C to 800°C under a nitrogen atmosphere X-ray powder diffraction (XRD) patterns were recorded using the Cu Kα radiation ( = 1.5418 A°) source on a D8 Advance Bruker powder diffractometer Scanning electron microscopy studies were conducted on a JSM 740 Scanning Electron Microscope (SEM) Transmission electron microscopy studies were performed using a JEOL JEM 1400 Transmission Electron Microscope (TEM) at 100 kV Fourier transform infrared (FT-IR) spectra were obtained on a Bruker TENSOR37 instrument, with samples being dispersed on potassium bromide pallets Gas storage capacity was investigated using a High Pressure Volumetric Analyzer (Micromeritics HPVA100) 2.2 Synthesis of the organic framework based on -CD (HCMUT-1) In a typical preparation, a solid mixture of -cyclodextrin (1.135 g, mmol) and KOH (0.448 g, mmol) was dissolved in deionized water (20 ml), and the resulting solution was distributed to three vials Methanol (50 ml) was allowed to vapor diffuse into the solution in an isothermal oven at room temperature for a week, producing light white crystals After being isolated and washed rapidly with MeOH (3 x 30 ml), the crystals were directly used (assynthesized HCMUT-1) or dried under vacuum for 6h 2.3 Study of chemical stability Unless specific notice, 50 mg of as-synthesized HCMUT-1 was dispersed in a 1-dram vial containing 0.5 mL solvent After certain time, the vial was decanted and the material was dried under vacuum for 30 at ambient temperature Gas adsorption and/or XRD studies were then applied with the obtained solid without further purification RESULTS AND DISCUSSION In this work, the HCMUT-1 was synthesized by a vapor diffusion method, as developed by Stoddart and co-workers [32, 37] The crystal was then characterized using a variety of different techniques as XRD, FT-IR, TGA, SEM, TEM and nitrogen physisorption measurements As can be seen in Figure 1, the X-ray diffraction patterns of the HCMUT-1 demonstrated the presence of very sharp peaks at 2 of approximately 5.5o, proving the highly crystallinity of the HCMUT-1 The SEM micrograph revealed the presence of well-formed crystals, being similar to those of analogous CD-MOF-1 previously mentioned in the literature [38] (Figure 2) The TEM observation showed that HCMUT-1 possessed a porous structure (Figure 3) Figure XRD patterns of the as-synthesized HCMUT-1 Figure SEM micrograph of the HCMUT-1 Figure TEM micrograph of the HCMUT-1 Figure Thermalgravimetric analysis of as- synthesized HCMUT-1 The thermal stability of the HCMUT-1 was also examined by the thermalgravimetric analysis (TGA) The TGA profile in Figure showed that a significant weight-loss of the HCMUT-1 started at 60°C The initial weight loss of 11.27% occurred from 60°C to approximately 128°C, corresponded well to the loss of alcohol or water per monomer The next decreasing in weight of 16.58% began at nearly 293°C, when the pyrolysis began to occur The thermal degradation proceeded until the structure of HCMUT-1 was completely decomposed at about 322°C The decomposition temperature of HCMUT-1 was higher than that of the γ-CDMOF in previous study [39] which was also accordant with temperature of degradation between the two type of cyclodextrin [40] The mass percentage of the remained HCMUT-1 was about 20.74%, corresponding with the oxide and residue (“char”) in the HCMUT-1 The TGA result indicated that the HCMUT-1 was stable up to 320°C Gas capacity of HCMUT-1 was then evaluated Interestingly, ability of hydrogen, methane, and carbon dioxide storage of HCMUT-1 was observed (Figure 5) Although low value of gas adsorption was obtained, potential results encouraged us to believe that this material is a promising candidate for further applications Nitrogen uptake at low pressure (0 < p/po < 1) was also studied The as-synthesized material showed good adsorption behavior with a capacity of 195 cm3/g (Figure 6) However, activation under vacuum at high temperature affected the structure, resulting in a dramatic decrease in adsorbed volume We hypothesized that flexible structure of alkali cations is responsible for this phenomenon [35] XRD results also confirmed the structure change after vacuum treatment Although general crystal structure was still achieved, the presence of strange phases, which could not be explained at this time, was detected (Figure 7) Figure Gas adsorption of the HCMUT-1 at ambient temperature Figure Nitrogen adsorption of the HCMUT-1 at low-region pressure range under different treatment conditions Figure XRD patterns of the HCMUT-1 under different treatment conditions Interestingly, the HCMUT-1 performed chemical stability under specific conditions After dispersed in toluene at room temperature for days, a drop in nitrogen capacity of the material was negligible Slight changes in XRD results were also shown (Figure 7) These results implied the sustainable structure of HCMUT-1 after solvent treatment Such a stability of coordinated organic framework in non-polar aromatic solvent was also reported before [41] In the other hand, the HCMUT-1 structure was believed to be destroyed in boiling methanol after similar treatment No nitrogen uptake and XRD performance were detected Further investigations about solvent effects and/or temperature on chemical stability of this framework have been studied As can be seen in Figure 8, FT-IR spectra of the HCMUT-1 exhibited the presence of a strong peak at 3459 cm-1 which is derived from OH- groups The sharp peak at 2940 cm−1 and stretching band (1020 – 1150 cm-1) were indicative of the presence of -C-H- and the -C-O-Cbond in the HCMUT-1’s structure, respectively The peak at 1660 cm-1 showed that the water molecules were still in the structure which coincided with the result of TGA in Figure Indeed, this result was relatively similar to FT-IR spectra of γ-CD-MOF in previous report [39] Figure FT-IR spectra of the HCMUT-1 CONCLUSION In summary, a green coordinated organic framework based on -CD HCMUT-1 was synthesized by a vapor diffusion method, and its structure was characterized and studied by various techniques, including FT-IR, XRD, SEM, TEM, TGA, and nitrogen physisorption measurements This material was proved as a potential candidate for gas adsorption More interestingly, the HCMUT-1 offers relatively chemical stability under neat or non-polar aromatic solvent at ambient temperature Further studies focusing on expanding the applications of our material are under investigations in our lab Acknowledgement The Ho Chi Minh City Department of Science and Technology (Vietnam) is acknowledged for financial support through contract no 217/2014/HĐ-SKHCN, 9/12/2014 REFERENCES D Farrusseng, S Aguado, C Pinel, Ang Chem Int Ed 48 (2009) 7502 A Corma, H García, F X Llabrés i Xamena, Chem Rev 110 (2010) 4606 H Deng, C J Doonan, H Furukawa, R B Ferreira, J Towne, C B Knobler, B Wang, O M Yaghi, Science 327 (2010) 846 L Hailian, E Mohamed, M O Keeffe, O M Yaghi, Nature 402 (1999) 276 P Falcaro, R Ricco, C M Doherty, K Liang, A J Hill, M J Styles, Chem Soc Rev 43 (2014) 5513 A Dhakshinamoorthy, M Alvaro, H Garcia, Chem Commun 48 (2012) 11275 K C Hee, Y S.-P Diana, K Jaheon, G YongBok, E Mohamed, J M Adam, O K Michael, M Y Omar, Nature 427 (2004) 523 D J Tranchemontagne, Z Ni, M O'Keeffe, O M Yaghi, Ang.Chem Int Ed 47 (2008) 5136 H Furukawa, K E Cordova, M O’Keeffe, O M Yaghi, Science 341 (2013) 10 Q Yang, V Guillerm, F Ragon, A D Wiersum, P L Llewellyn, C Zhong, T Devic, C Serre, G Maurin, Chem Commun 48 (2012) 9831 11 P D C Dietzel, V Besikiotis, R Blom, J Mater Chem 19 (2009) 7362 12 S Ma, H.-C Zhou, Chem Commun 46 (2010) 44 13 B Liu, J Mat Chem 22 (2012) 10094 14 S A Sapchenko, D G Samsonenko, D N Dybtsev, M S Melgunov, V P Fedin, Dalton Trans 40 (2011) 2196 15 J Lee, O K Farha, J Roberts, K A Scheidt, S T Nguyen, J T Hupp, Chem Soc Rev 38 (2009) 1450 16 E Pérez-Mayoral, J Čejka, ChemCatChem (2011) 157 17 J An, N L Rosi, J Am Chem Soc 132 (2010) 5578 18 C Y Lee, O K Farha, B J Hong, A A Sarjeant, S T Nguyen, J T Hupp, J Am Chem Soc 133 (2011) 15858 19 C A Kent, B P Mehl, L Ma, J M Papanikolas, T J Meyer, W Lin, J Am Chem Soc 132 (2010) 12767 20 R C Huxford, J Della Rocca, W Lin, Curr Opin Chem Biol 14 (2010) 262 21 Z Ma, B Moulton, Coord Chem Rev 255 (2011) 1623 22 G Férey, Chem Soc Rev 37 (2008) 191 23 K Koh, A G Wong-Foy, A J Matzger, J Am Chem Soc 131 (2009) 4184 24 C Serre, S Bourrelly, A Vimont, N A Ramsahye, G Maurin, P L Llewellyn, M Daturi, Y Filinchuk, O Leynaud, P Barnes, G Férey, Adv Mater 19 (2007) 2246 25 B Chen, N W Ockwig, A R Millward, D S Contreras, O M Yaghi, Ang Chem 117 (2005) 4823 26 S Couck, J F M Denayer, G V Baron, T Rémy, J Gascon, F Kapteijn, J Am Chem Soc 131 (2009) 6326 27 Z Liu, J F Stoddart, Pure Appl Chem 86 (2014) 1323 28 C R DASS, W JESSUP, J Pharm Pharm Sci 52 (2000) 731 29 E M Del Valle, Process Biochem 39 (2004) 1033 30 S Menuel, J.-P Joly, B Courcot, J Elysée, N.-E Ghermani, A Marsura, Tetrahedron 63 (2007) 1706 31 R S Forgan, R A Smaldone, J J Gassensmith, H Furukawa, D B Cordes, Q Li, C E Wilmer, Y Y Botros, R Q Snurr, A M Slawin, J Am Chem Soc 134 (2011) 406 32 J J Gassensmith, H Furukawa, R A Smaldone, R S Forgan, Y Y Botros, O M Yaghi, J F Stoddart, J Am Chem Soc 133 (2011) 15312 33 D Wu, J J Gassensmith, D Gouvea, S Ushakov, J F Stoddart, A Navrotsky, J Am Chem Soc 135 (2013) 6790 34 J J Gassensmith, J Y Kim, J M Holcroft, O K Farha, J F Stoddart, J T Hupp, N C Jeong, J Am Chem Soc 136 (2014) 8277 35 I Nicolis, A W Coleman, P Charpin, C de Rango, Ang Chem Int Ed 34 (1995) 2381 36 I Nicolis, A Coleman, P Charpin, C d Rango, Acta Crystallogr B 52 (1996) 122 37 J J Gassensmith, R A Smaldone, R S Forgan, C E Wilmer, D B Cordes, Y Y Botros, A M Slawin, R Q Snurr, J F Stoddart, Org Lett 14 (2012) 1460 38 R A Smaldone, R S Forgan, H Furukawa, J J Gassensmith, A M Slawin, O M Yaghi, J F Stoddart, Ang Chem Int Ed 49 (2010) 8630 39 Y Furukawa, T Ishiwata, K Sugikawa, K Kokado, K Sada, Ang Chem Int Ed 51 (2012) 10566 40 F Trotta, M Zanetti, G Camino, Polym Degrad Stabil 69 (2000) 373 41 K S Park, Z Ni, A P Côté, J Y Choi, R Huang, F J Uribe-Romo, H K Chae, M O’Keeffe, O M Yaghi, Proc Natl Acad Sci 103 (2006) 10186

Ngày đăng: 05/10/2023, 19:57

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan