1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Luận văn) application of titanate nanotubes silicon dioxide (tntsio2) nanocomposite for the adsorption heavy metal (copper (ii) ion) in aqueous solution

54 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

THAI NGUYEN UNIVERSITY UNIVERSITY OF AGRICULTURE AND FORESTRY NGUYEN THUY TRANG APPLICATION OF TITANATE NANOTUBES-SILICON DIOXIDE (TNT@SiO2) NANOCOMPOSITE FOR THE ADSORPTION HEAVY METAL (COPPER (II) ION) IN AQUEOUS SOLUTION Lu an BACHELOR THESIS n va ac th Study Mode: Full-time si Major: Environmental Science and Management nl w Faculty: International Training and Development Center d oa Batch: 2012-2016 lu an n va ll fu Thai Nguyen, 20/07/2016 m oi nh at z z Thai Nguyen University of Agriculture and Forestry Degree Program Bachelor of Environmental Science and Management Student name Nguyen Thuy Trang Student ID DTN1253060015 Thesis Title Application of Titanate nanotubes-Silicon dioxide (TNT@SiO2) nanocomposite for the adsorption heavy metal (Copper (II) ion) in aqueous solution Supervisor(s) Prof Dr Ruey- an Doong- National Tsing Hua University, Taiwan Assoc Prof Dr Tran Thi Thu Ha- Thai Nguyen University of Agriculture and Forestry, Vietnam Abstract: The objective of this study was to fabricate TNT@SiO2 nanocomposite material with specific surface areas, pore structure for the adsorption heavy metal- Cu(II) ion Lu an in aqueous solution With a large amount of SiO2 was contained in waste display n va panel glass combined with TiO2 have the unique morphology, strong oxidative ac th properties, low cost, non-toxicity, chemical and thermal stability through a si hydrothermal method The morphology changed when mixing SiO2 with TiO2 and oa nl w then the TNT surface area improved, -O-Ti-O-Si- linkage is formed In addition, TNT@SiO2 nanocomposite is an effective adsorbent heavy metal in aqueous d lu an solution The results demonstrated that 100% Cu(II) ion is absorbed by TNT@SiO2 n va nanocomposite and separated out of aqueous solution within 30 minutes reaction fu ll Results obtained in this study clearly show TNT@SiO2 nanocomposite is successful m oi nh at i z z for the adsorption heavy metals ion in solution Keywords TNT@SiO2 nanocomposite , hydrothermal method, adsorption, heavy metal, Cu(II) ion Number of pages 56 Date of submission 30th August, 2016 Supervisor’s signature an Lu n va ac th si d oa nl w lu an ll fu n va m oi nh at ii z z ACKNOWLEAGEMENT Firstly, I would like to say thanks to the cooperation between Thai Nguyen University of Agriculture and Forestry and National Tsing Hua University for providing me an amazing opportunity to internship in Taiwan It brings me great pleasure to work and submit my thesis for graduation I would like to express my deeply gratitude to Prof Dr Ruey- an Doong whose guidance, encouragement, suggestion and very constructive criticism have contributed immensely to the evolution of my ideas during the project Without his guidance, I may not have this thesis I sincerely thanks to Assoc Prof Dr Tran Thi Thu Ha for her advices, assistance, sharing experiences before and after I went to Taiwan, helping me to understand and complete proposal and thesis I am also thankful to Mr Nguyen Thanh Binh (PhD) and Ms Khuat Thi Lu an Thanh Huyen for teaching me the synthesis of nanotubes and various other va n techniques and methods used in environmental field They were very helpful in th ac providing me constructive feedback and suggestions on my project and helping me to si w successful complete several of my experiments and report Without them help and d oa nl devotion, I would not be able to reach this stage lu I am really fortunate to be in Prof Dr Ruey- an Doong’s lab Thanks to all the an ll fu there n va members in Professor Doong’s laboratory who hearty help me a lot when I work in m oi nh at iii z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 I also thank to my family for providing me emotional, unceasing encouragement and physical and financial support At last, I would like to thank all those other persons who helped me in completing this report Because of my lack knowledge, the mistake is inevitable, I am very grateful if I receive the comments and opinions from teachers and others to contribute my report Sincerely, Nguyen Thuy Trang an Lu n va ac th si d oa nl w lu an ll fu n va m oi nh at iv z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 TABLE OF CONTENT LIST OF FIGURES LIST OF TABLES LIST OF ABBREVIATIONS PART I INTRODUCTION 1.1 Research rationale: 1.2 Research’s objectives 1.3 Research questions 1.4 Limitations PART II LITERATURE REVIEW 2.1 Heavy metals 2.1.1.Definition and sources of heavy metals: 2.1.2.Characteristics of heavy metals: 2.1.3.Heavy metals pollution in the world and Vietnam 2.1.3.1 Heavy metals pollution in the soil 2.1.3.2 Heavy metals pollution in coastal, marine environment 2.1.4.Effecting of heavy metals to environment and human’s health 10 2.1.5.The characteristics and health effects of Copper 12 2.1.6.Method for treament heavy metals in aqueous solutions 13 2.2 Nanomaterials: 13 Lu an 2.2.1.Titanate nanotubes ( TNT) : 15 va 2.2.1.1 Overview of Titanium dioxide: 15 n 2.2.1.1.1.Titanium oxidation structures and properties: 15 ac th 2.2.1.1.2.Titanate nanotubes(TNT) 16 si 2.2.2.Overview of SiO2: 17 2.2.3.Overview of nanocomposite 18 nl w 2.2.3.1 Definition and characteristics of nanocomposite 18 oa 2.2.3.2 SiO2@TNT nanocomposite 19 d PART III MATERIALS AND METHODS 20 lu an 3.1 Materials 20 n va 3.2 Methods: 22 fu 3.2.1.The synthesis of TNT: 22 ll 3.2.2.The synthesis of TNT@SiO2 nanocomposite 23 m oi 3.2.3.Adsorption experiment: 23 nh at v z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 3.2.4.The methods for determining the characteristics of materials 24 3.2.4.1 X-ray Diffraction ( XRD) 25 3.2.4.2 Scanning Electron Microscopy ( SEM) 26 3.2.4.3 Transmission Electron Microscopy ( TEM) 28 3.2.4.4 Fourier transform infrared spectroscopy ( FTIR) 29 3.2.4.5 Zeta potential (ZP) 30 3.2.4.6 Atomic absorption spectroscopy 32 PART IV RESULTS 33 4.1 The X-ray diffraction of TNT, SiO2 and SiO2@TNT composite 33 4.2 Morphology of TNT, SiO2 and TNT@SiO2 composite 34 4.3 Fourier transform infrared (FTIR) spectrum of SiO2, the synthesis TNT and TNT@SiO2 37 4.4 Zeta potential 38 4.5 Application of TNT@SiO2 for the adsorption Cu(II) ion 39 PART V DISCUSSION AND CONCLUSION 41 5.1 Discussion 41 5.2 Conclusion 42 REFERENCES 43 an Lu n va ac th si d oa nl w lu an ll fu n va m oi nh at vi z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 LIST OF FIGURES Figure 2.2.1.1.1: Crystal structure of the three forms of titanium dioxide 15 Figure 2.2.2 : Crystal structure of SiO2 17 Figure 3.1.2: Some instruments used for this study 21 Figure 3.2.1: Schematic of the synthesis TNT 22 Figure 3.2.2: Schematic of the synthesis TNT@SiO2 23 Figure 3.2.3 : The samples of Cu(II) ion (10mg/L) and TNT@SiO2 of the adsorption experiment at pH=5 in the different times 24 Figure 3.2.4.1: Schematics of X-ray diffractometer technique used for crystal structure analysis 26 Figure 3.2.4.2: Schematic diagram of SEM 28 Figure 3.2.4.3: Schematic diagram of TEM 29 Figure 3.2.4.5: The effect of pH on Zeta potential 31 Figure 3.2.4.6: Schematic of an atomic-absorption experiment 32 Figure 4.1: XRD patterns of TNT, SiO2 and SiO2@TNT composite 33 Lu an Figure 4.2 A: SEM images of the synthesis TNT(a) and TNT@SiO2 composite (b) 34 n va Figure 4.2 B: TEM images of SiO2, the synthesis TNT and TNT@SiO2 composite 36 ac th Figure 4.3: FTIR spectrum of SiO2, the synthesis TNT and TNT@SiO2 37 si Figure 4.4: The effect of pH to zeta potential of SiO2@TNT 38 w Figure 4.5: The adsorption Cu (II) ion (10mg/L) by TNT@ SiO2 at pH=5 in aqueous solution d oa nl at room temperature 39 lu an ll fu n va m oi nh at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 LIST OF TABLES Table 3.1.1: Sources of chemical materials 20 an Lu n va ac th si d oa nl w lu an ll fu n va m oi nh at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 LIST OF ABBREVIATIONS TNT TiO2/ Titanate nanotubes SiO2@TNT or SiO2 + TiO2 nano composite TNT@SiO2 TiO2 + SiO2 nano composite XRD X-Ray Diffraction SEM Scanning Electron Microscopy TEM Transmission Electron Microscopy FTIR Fourier transform infrared spectroscopy ZP Zeta Potential AAS Atomic absorption spectroscopy an Lu n va ac th si d oa nl w lu an ll fu n va m oi nh at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 PART IV RESULTS 4.1 The X-ray diffraction of TNT, SiO2 and SiO2@TNT composite The XRD results for the crystal structures of TNT, SiO2 and SiO2@TNT composite were shown in Figure 4.1 as below SiO2@TNT SiO2 Intensity (a.u.) TNT 20 40 60 80 2θ (degree) an Lu Figure 4.1: XRD patterns of TNT, SiO2 and SiO2@TNT composite va n Figure 12 shows the XRD pattern of the TNT, SiO2 and SiO2@TNT th ac nanocomposite obtained by the hydrothermal method It reveals that as-synthesized si w SiO2@TNT nanocomposite has crystalline anatase phase mixed with amorphous silica oa nl matrix The XDR pattern of SiO2@TNT nanocomposite showed the diffraction peaks d indicating crystalline phase over the amorphous background The crystalline phase lu an n va was indexed in the light of available XRD data for TiO2 crystal structure and the ll fu diffraction peaks of XRD could be assigned to anatase structure of TiO2 at about the m 2θ = 25.4 and 48.50 The presence amorphous silica appeared in the XRD pattern as a oi nh 33 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 large band at around 20-300 The crystalline nature became prominent with increase the content of TiO2 in the SiO2@TNT composite From the XRD investigations, we could confirm that nano composite of SiO2 and TiO2 is formed 4.2 Morphology of TNT, SiO2 and TNT@SiO2 composite Figure 4.2 A, 4.2 B were shown the SEM and TEM images of SiO2,TNT and TNT@SiO2 composite The SEM image of TNT was presented in figure 4.2 A ( a) which clearly titanate nanotubes are formed, the nanotube is found to be predominant in the sample After the successful fabrication of TNT nanomaterials, the synthesized of TNT@SiO2 through an alkaline hydrothermal treatment have been illustrated the morphology in figure 4.2 A (b) Further observation indicates that silica nanoparticles presented on the surface of the titanate nanotubes It also seen that the average diameter of the tubes increases The distribution of the tubes become less uniform due to the mixing between silica particles and titanate nanotubes made TNT@SiO2 composite has a rough surface an Lu n va ac th si d oa nl w lu b an a n va ll fu Figure 4.2 A : SEM images of the synthesis TNT (a) and TNT@SiO2 composite (b) m oi nh 34 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 The TEM micrographs of TNT, SiO2, TNT@SiO2 composite are shown in figure 4.2 B (a,b,c,d,e) TEM images Figure 4.2 B (a,b), reveals the presence of silica nanoparticles and titanate nanotubes, respectively And the characteristics of TNT@SiO2 composite were further examined and showed in figure 4.2 B (c,d,e) It was observed that silica nanoparticles were distributed in wide area on titanate nanotubes, in where the silica interacted with the nanotube via oxygen atoms, and formed -Ti-O-Si-O- linkage to enhance the pore structure and surface area of nanomaterial The TEM images illustrate the good dispersion of silica nanoparticles on the nanotubes As shown in the TEM images, the nanostructure is confirmed an Lu n va ac th si d oa nl w lu an ll fu n va m oi nh 35 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 SiO2 TNT a b TNT@SiO2 TNT@SiO2 c d Lu TNT@SiO2 an n va ac th si d oa nl w lu e an n va ll fu Figure 4.2 B: TEM images of SiO2, the synthesis TNT and TNT@SiO2 composite m oi nh 36 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 4.3 Fourier transform infrared (FTIR) spectrum of SiO2, the synthesis TNT and TNT@SiO2 Figure 4.3: FTIR spectrum of SiO2, the synthesis TNT and TNT@SiO2 Lu Fourier transform infrared (FTIR) spectrum of as-synthesized TiO2 nanotubes an is shown in Figure 4.3 It was absorbed that the strong band in the range of 950–500 va n cm−1 is associated with the characteristic vibrational modes of TiO2 This confirms th ac that the TiO2 phase has been formed si The IR spectrum of SiO2 depicted in this figure 4.3 shows the characteristic nl w d oa adsorption bands of silicon dioxide, the Si–O–Si asymmetric and symmetric stretching lu vibration at 1,100 and almost 800 cm−1, respectively, and the O–Si–O symmetric an n va bending vibration at about 500 cm−1 The absorption bands at 3,420 and 1,400 cm−1 ll fu were due to the presence of O–H stretching and bending vibrations, respectively m oi nh 37 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 Fourier transform infrared (FTIR) spectrum of as-synthesized of TNT@SiO2 nanocomposite is also shown in this figure 4.3 The band observed at 923 cm−1 is associated with Si–O–Ti vibration The two strong bands at 1,100 and 800 cm−1 observed are associated with asymmetric and symmetric Si–O–Si stretching vibration, respectively The strong bands in the range 950–500 cm−1 are associated with vibrational modes of TiO2 The absorption bands at around 3,500 and 1,400 cm−1 were due to the presence of O–H stretching and bending vibrations, respectively 4.4 Zeta potential 40 30 SiO2@TNT 10 -10 an Lu va Zeta potential (mV) 20 -20 n ac th -30 si -40 w 10 oa nl pH d Figure 4.4: The effect of pH to zeta potential of SiO2@TNT lu an n va It can be seen that if the zeta potential is possitive from about 33mV to mV ll fu belong to pH 1-5 However if the pH of the system has pH between and 10, the zeta m potential is negative from to -28mV The zeta potential is about mV, pH reach to oi nh 38 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 around pH ~5 (the isoelectric point- IEP) in the pH range from to 11 At pH values less than 3, there is significant positive charge present In addition, at pH values greater than 8, there is significant negative charge present 4.5 Application of TNT@SiO2 for the adsorption Cu (II) ion The adsorption capacity Copper ion by TNT@SiO2 nano composite was examined 1.0 0.8 C/Co 0.6 0.4 0.2 0.0 20 40 60 Lu Time (min) an n va ac th Figure 4.5: The adsorption Cu (II) ion (10mg/L) by TNT@ SiO2 at pH=5 in aqueous si solution at room temperature nl w d oa There was a significant increase in the adsorption capacity Cu(II) ion by lu TNT@SiO2 nano composite at pH=5 in the different times The results presented in an n va figure 4.5 above In the concentration 10ppm, at the beginning, 100% Cu(II) ion was ll fu contained in an aqueous solution In the first 15 minutes, the separation efficiency m oi Cu(II) ion out of aqueous solution increased dramatically and reached to 90% But 15 nh 39 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 minutes later, 100% Cu(II) ion was adsorbed by TNT@SiO2 nanocomposite in aqueous solution and did not show changes in the remaining 30 minutes It is clearly demonstrated that the synthesized TNT@SiO2 composite with high pore structure volume and high surface area, as well as surface functionality, that are very good for the adsorption capacity of heavy metal in aqueous solution an Lu n va ac th si d oa nl w lu an ll fu n va m oi nh 40 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 PART V DISCUSSION AND CONCLUSION 5.1 Discussion The study has developed TNT@SiO2 nano composite for the adsorption heavy metals-Cu(II) ion in aqueous solution A large amount of SiO2 was collected in waste display panel glass combined with TiO2 have the unique morphology, strong oxidative properties, low cost, non-toxicity, chemical and thermal stability The main advantages of this adsorption procedure include simplicity, cost effectiveness, rapidity, and higher separation efficiency heavy metals of TNT@SiO2 composite In the study, TNT and TNT@SiO2 were synthesized through an alkaline hydrothermal treatment, and their adsorption capacity was evaluated The characteristics of TNT, TNT@SiO2 nanocomposite were determined by XRD, TEM, SEM, FTIR, and AAS The variation of morphology of silica nano particles, titanate nanotubes and formation of – O-Ti-OSi- function group were thus determined with SEM, TEM and FTIR The presence of an Lu anatase phases in the TNT@SiO2 composite and the structural properties were n va confirmed by XRD The effect of pH on the zeta potential is investigated in ac th TNT@SiO2 composite at pH~5 (IEP) The results demonstrated that TNT@SiO2 si composite is an effective adsorbent heavy metal in aqueous solution 100% Cu(II) ion nl w is absorbed by TNT@SiO2 nanocomposite and separated out of aqueous solution after d oa 30 minutes reaction The synthesized TNT@SiO2 have an effective adsorption heavy lu metal with contributing of the pore structure and high surface area Thus, TNT@SiO2 an The outstanding physicochemical properties ll solution fu n va is promising adsorption in the successful treatment other metals ion in aqueous of the TNT@SiO2 m oi nh 41 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 nanocomposite will play a very important role in environmental pollution management in the future 5.2 Conclusion In conclusion, nano composites have gained much interest recently Significant efforts are underway to control the nano structures via innovative synthetic approaches The successful combination of waste display panel glass which contains a large of SiO2 with TiO2 which has confirmed by the characteristics of nanotubes, the pore structure, the specific surface area and TNT@SiO2 nano composite was formed The synthesized TNT@SiO2 nanocomposite by hydrothermal method was determined, examined and analyzed through the XRD, SEM, TEM, FTIR, Zeta potential With crystalline anatase phase of TNT mixed with amorphous silica matrix, the good dispersion of silica nanoparticles on the nanotubes, -Ti-O-Si-O- linkage was formed to enhance the pore structure and surface area of nanomaterial, the zeta potential was about mV and pH an Lu reach to around pH ~5 (IEP), that TNT@SiO2 nanocomposite was successful for the adsorption Cu(II) ion in aqueous solution within 30 minutes via AAS method Thus, va n this nanocomposite can be extended to apply for the adsorption other heavy metals ion ac th in aqueous solution With low-cost, chemically stable, harmless, large specific surface si w area and high pore volume, the study on the adsorption heavy metal ions of d oa nl TNT@SiO2 nanocomposite to large scale that may have high practical applicability lu and should apply for treating to the different environments of water contaminated in an ll fu n va the future m oi nh 42 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 REFERENCES Ajay Kumar Mishra (2015) Nanocomposites in Wastewater Treatment Pan Stanford Publishing Pte Ltd ISBN 978-981-4463-55-3 Arifin, Z (2001) Heavy metal pollution in sediments of coastal waters of Indonesia In Proceedings of the Fifth IOC/WESTPAC International Scientific Symposium Byun, S K (Ed.), pp.25–49, IOC WESTPAC, Ministry of Maritime Affairs and Fisheries of South Korea, Seoul B D Cullity (1956) Elements of X-ray Diffraction Addison-Wesley Publishing Company Inc., Massachusetts B.J.Pan, B.C.Pan, W.M.Zhang, L.Lv, Q.X.Zhang, S.R.Zheng.(2009) Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters 151, 19– 29 Bishop P L (2002) Pollution prevention fundamentals and practice Beijing Tsing Hua University Press Chemistry Explained (2016) Copper Chemistry Explained Foundation and Lu Application Retrieved from: http://www.chemistryexplained.com/elements/C-K/Copper.html an n va Chen W, Duan L, Zhu DQ (2007) Adsorption of polar and nonpolar organic ac th chemicals to carbon nanotubes Environ Sci Technol.41(24):8295–300 Cheng S ( 2003) Heavy metal pollution in China: origin, pattern and control, Environ si w Sci Pollut Res Int.10(3):192-8 oa nl Cole M.; Lindeque P.; Halsband C.; Galloway T.S (2011) "Microplastics as d contaminants in the marine environment: A review" Marine Pollution Bulletin 62 (12): lu an 2588–2597.doi:10.1016/j.marpolbul.2011.09.025 ll fu n va m oi nh 43 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 Colloidal Dynamics.(2002) Measuring Zeta Potential Retrieved from: http://www.ceramicindustry.com/articles/83028-measuring-zeta-potential D.V Bavykin, F.C Walsh (2009) Elongated Titanate Nanostructures and Their Applications, Eur J Inorg Chem 8: 977–997 D.V Bavykin, J.M Friedrich, F.C Walsh (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications, Adv Mater 18: 2807–2824 Doong, R A., Tsai, C W., & Liao, C I (2012) Coupled removal of bisphenol A and copper ion by titanate nanotubes fabricated at different calcination temperatures Separation and Purification Technology, 91, 81-88 FAO/NACA (1995) Regional Study and Workshop on the Environmental Assessment and Management of Aquaculture Development Annex II-17 Vietnam NACA Environment and Aquaculture Development Series No Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand Retrieved from: http://www.fao.org/docrep/field/003/ac279e/AC279E21.htm Floriano, E A., Scalvi, L V A., Saeki, M J., & Sambrano, J R (2014) Preparation an Lu of TiO2/SnO2 Thin Films by Sol-Gel Method and Periodic B3LYP Simulations [Article] va Journal of Physical Chemistry A, 118(31), 5857-5865 n Foulkes, W D., Stefansson, I M., Chappuis, P O., Bégin, L R., Goffin, J R., Wong, ac th N., & Akslen, L A (2000) Germline BRCA1 mutations and a basal epithelial phenotype si w in breast cancer Journal of the National Cancer Institute, 95(19), 1482-1485 d Shodhganga Retrieved from: oa nl Goswami Pallabi (2012) A study of photo catalysis on nanosized Ti iv oxide lu an http://shodhganga.inflibnet.ac.in/bitstream/10603/28268/10/10_chapter%201.pdf n va Greszta, J., Godzik, S (1969) Effect of zinc metallurgy on soils Rocz Gleboznawcze ll fu m 20(1):195- 215 oi nh 44 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 H.-H Ou, S.-L Lo (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application, Sep Purif Technol 58 :179– 191 Ha, C T.(2011) Survey on heavy metals contaminated soils in Thai Nguyen and Hung Yen provinces in Northern Vietnam J Viet Env 1(1): 34-39 Hanprasopwattana A, Rieker T, Sault A, Datye A (1997) Catal Lett 45:165–175 Harvey PJ, Handley HK, Taylor MP (2015) "Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions" Environmental Science and Research 22: Pollution 12276– 12288 doi:10.1007/s11356-015-4349-2 Holleman, A F.; Wiberg, N (2001) Inorganic Chemistry San Diego: Academic Press ISBN 978-0-12-352651-9 Howell N, Lavers J, Paterson D, Garrett R, Banati R (2012) "Trace metal distribution in feathers from migratory, pelagic birds" Australian Nuclear Science and Technology Organisation Retrieved 2014-05-03 an Lu Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, va interactions and potential environmental implications Sci Total Environ 400(1–3): 396–414 n Kadam, R M., Rajeswari, B., Sengupta, A., Achary, S N., Kshirsagar, R J., & ac th Natarajan, V (2015) Structural characterization of titania by X-ray diffraction, si w photoacoustic, Raman spectroscopy and electron paramagnetic resonance spectroscopy oa nl Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 137, 363-370 d Kavitha S & T Felix Kala (2016) Bamboo Fibre Analysis by Scanning Electron lu an Microscope Study International Journal of Civil Engineering and Technology, 7(4): 234–241 ll fu n va m oi nh 45 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 Kh M El-Moselhy & A.I Othman & H Abd El-Azem & M.E.A El- Metwally.(2014) Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt Egyptian Journal of Basic and Applied Sciences 1(2): 97-105 Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S.( 2012) A review on nanomaterials for environmental remediation Energy Environ Sci 5(8):8075–109 Kuen S L & Hao W C & Wen R C & Chian F W (2010) Synthesis, characterization, and adsorption kinetics of titania nanotubes for basic dye wastewater treament Springer Science.16: 47-56 DOI 10.1007/s10450-010-9216-3 Kyawthetlatt.(2013) SiO2 Lattice Structure Material Science Retrieved from:http://blog.nus.edu.sg/kyawthetlatt/2013/08/22/sio2-lattice-structure/ Le, D., Nguyen, X C (1998) Soil polluted by heavy metals in Red river delta Scientific symposium of University of Science, pp 193-197 Manfred N Partl , Hussain U Bahia , Francesco Canestrari , Chantal de la Roche , Hervé Di Benedetto , Herald Piber , Dariusz Sybilski (Ed.) (2013) Advances in Interlaboratory Testing and Evaluation of Bituminous Materials: State-of-the-Art Report of an Lu the RILEM Technical Committee 206-ATB Springer pp 422 va Nguyen, N N 2003 Content micro nutrient and heavy metals in some major soils in n the North-East mountainous zone of Vietnam Vietnam Soil Science Journal 18:15-18 ac th Nguyen, T H., Le, T T., Vu, D Q (2001) Study on effect of waste water resources si oa nl Journal 14:60-67 w from industry and urban to soil environment in Thanh Tri district Vietnam Soil Science d Pelaez, M., Nolan, N T., Pillai, S C., Seery, M K., Falaras, P., Kontos, A G., et al lu an (2012) A review on the visible light active titanium dioxide photocatalysts for environmental n va applications Applied Catalysis B-Environmental 125, 331-349 ll fu m oi nh 46 at z z 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.2237.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.66 37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.99

Ngày đăng: 25/09/2023, 07:36

Xem thêm: