1. Trang chủ
  2. » Luận Văn - Báo Cáo

Investigation of laser pulse propagation in a three level atomic medium in the presence of eit effect

36 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 36
Dung lượng 2,71 MB

Nội dung

MINISTRYOFEDUCATIONANDTRAININGVINHUNIVERSITY - - HOANGMINHDONG INVESTIGATIONOFLASERPULSEPROPAGATIONINA THREE-LEVELATOMICMEDIUM INTHEPRESENCEOFEITEFFECT Specialty:Optics Code:62.44.01.09 ASUMMARYOFPHYSICALDOCTORALTHESIS NGHEAN,2017 WorkcompletedatVinhuniversity Supervisors:Prof.Dr.DinhXuanKhoa Reviewer1:Prof.Dr.NguyenQuangBau Reviewer2:Assoc.Prof.DrChuDinhThuy Reviewer3:Assoc.Prof.DrTranHongNhung Thethesiswillbepresentedatschool-levelevaluatingCouncilat: …… ….h…………,date…………month… year2017 Thethesiscanbefoundat:NationallibraryofVietnamorNguyenTh ucHaoinformationandlibrarycenter,Vinhuniversity INTRODUCTION In the past decades, the topic of laser pulses propagation withoutdistortion (soliton) has been attracted much research attention of scientistsbecauseoftheirpotentialapplicationsinopticalinformationanddatapr ocessing.Infact,whenthelightpulsepropagatesint h e r e s o n a n t medium, due to the absorption and dispersion that lead to reduction anddistortion of the signal pulse Therefore, to obtain pulse stability, we oftenuseultrashortpulseswithhighintensity.Moreover,mosto f t h e applicati ons in modern photonic devices often require low-intensity lightwith high sensitivity Therefore, reducing the absorption in the resonancedomain is an excellent solution to reduce the intensity of light pulse andincrease theoperatingefficiencyof photonicdevices Currently,aninterestingsolutionisusedtoreduceabsorptioniselectromag netici n d u c t i o n t r a n s p a r e n c y ( E I T ) e f f e c t T h e b a s i s o f E I T i s theresultofquantuminterferencebetweentheprobabilitya m p l i t u d e s withi ntheatomicsystemwhichisinducedbylaserfields.UsingEITtechnique, some research groupshaveobtainedstablelaserpulses(soliton)in EIT medium Most recently, T Nakajima and coworkers studied thepropagation of two short laser pulse trains in a three-level lambdatypeatomicmediumunderEITconditions.Theyobtainedlaserpulsespropagatin g EIT medium without distortion in picosecond domain.Theinitial studies of pulse propagation inEIT mediumo f t e n ignorethe e f f e c t ofDopplerbroadening.Thiscan onlybesuitableforcoldato micmediumor ultra-short laser pulses Moreover, many applications such as opticalcommunications that require working with long laser pulses in nano ormicro-second domain In addition to quantum interference effects of the shift probabilityamplitude,thereisaquantuminterferenceeffectoccursbetweenspon taneous emission channels by the non-orthogonal orientation of theelectric dipole moment is induced by two laser fields This interference willcreateacoherentofatomsiscalledthecoherenceisgeneratedbyspontaneouse mission(spontaneouslyGeneratedCoherence-SGC).Experimentally, SGC effects were observedforthefirsttimebyXiaandetal 1996 in molecular sodium The presence of the SGC makes the mediumbecome more transparent and narrower the line width; larger and steeperdispersion Furthermore, the results also show that the effect of SGC makesan asymmetric medium so that the response of the medium is very sensitivetothephaseoflaserfields Sofar,theinfluencesofSGCandrelativephaseontheopticalpropertieso f t heEITmediumundersteady-stateregimehavepublished However,theseinfluencesonpulsepropagationeffecthavenotbeeninvestigated With the urgency of the issue of research and the reasons mentionedabove,wechooseresearchtopic"investigationoflaserpulsepropagationi nathree-levelatomicmediuminthepresenceofEITeffect" TheaimofthethesisistostudytheeffectsoflasercouplingparametersandD opplerbroadeningontheprocessoflaserpulsepropagationindifferentpulsedomains.Studyingon influences of the non-orthogonal orientation of electric dipole moments and the relative phase onthelaserpulsepropagationinthepresence ofincoherentpump Chapter1 PULSEPROPAGATIONINRESONANTMEDIA 1.1 Interactionbetweentwo-levelatomsandlight Weassumeasingleopticalfieldpropagatinginthezdirectionhave form:   → Ez,tz,t e ikzt c.c, (1.1) where z,t ist h e e n v e l o p e f u n c t i o n , ωis i s t h e f r e q u e n c y o f l i g h t , a n d k = ωis/ccisthewavenumber 1.1.1 DensityMatrixFormalism Realm e d i a o f t e n c a n n o t b e s u f f i c i e n t l y d e s c r i b e d b y a s i n g l e w a v e functionand,inthatcase,thedensitymatrixformulasisnecessary, 12  cc12*  11  c        c * (1.2)   c c2  21 22 , 2  For both mixed and pure states, the density matrix must have unittrace (1122 1) so that probability is conserved in our closed system.Thedensitymatrixoperator’sevolutionaccordingtotheLiouvilleequation:  i  (1.3)   H, t  In matrixform,theatom-fieldinteractionHamiltonianis:  → →  H  →1→  d.E  d*E     (1.4) 1.1.2 Atomicevolutioninrotatingwaveapproximation In the rotating wave approximation (RWA), to simplify theHamiltonian,weintroducetheunitary transformmatrix:  1 i t (1.5) U e 1  0 e ikzt  Hamiltonianintherotatingwavebasisas:   HRW UHU†i U U†  t  In termsofthedetuning,  HRW   (1.6)  21,theHamiltonianinthisbasisis: → →   d12.E e ikzt   (1.7) → → ikzt  d 21.E   e     Inmakingtherotatingwaveapproximation,wenegle ctthefast→ oscillating 2itt e r m s , a s s u m i n g t h a t t h e e n v e l o p e f u n c t i o n   z,t  v aries slowlyc o m p a r e d t o t h e c a r r i e r w a v e U s i n g t h i s a p p r o x i m a t i o n , w e f i n d totalHamiltonianinthe RWA:   → →       d12.  (1.8) d * RWA     *  H   → → 21        Intheabove,wehaveidentifiedtheRabifrequency, d21.z,t  z,t   (1.9) 1.1.3 Rabifloppingandpulsearea Theatomicpopulationisperiodicallytransferredbetweenthegroundan dexcitedstates, (1.10) 22 tsin2t /2 , ate x a c t r e s o n a n c e ( = ) T h i s p r o c e s s , k n o w n a s R a b i flopping,is illustratedi n F i g u r e T h e  0 t0ti s s o calledpulsearea,allow determinestheexcitedstatepopulation, 22, atanytimet Fig1.1.Rabifloppingofthepopulationintheexcitedstate Usingapulseareaisconvenient fordescribingthepulsetimedependen tenvelopefunction,defined:  (1.11) z  z,d,  Fig1.2.The Gaussianwithpulsewidth0=1andp u l s e area0t=2 1.1.4 TheMaxwell’sandwaveequations FromMaxwell’sequations,weleadtothewaveequation, → → 1 2→ E 2  2 c  t E c 0t P (1.12) 1.1.5 Theslowly-varyingenvelopeapproximationwaveequation Waveequationintheone-dimensionalform: 2→ 2→ 1 2→   0 , z2E c2 t2E t P (1.13) –→ whereP ist h e p o l a r i z a t i o n F o r a d i e l e c t r i c m e d i u m o f t w o - levelatoms withNisparticledensity,thepolarizationisexpressed: –→ PNTr → d, → ˆ   (1.14a)   N d12 21d 2112 , → →   RWeikzt  RWeikzt N d1221 d 2112  (1.14b) (1.14c)  Takingthederivatives(1.14c)andcollectingsame-frequencytermsinMaxwell's waveequation(1.13),we obtained: 2 2  →  →  → 1 2→ →  → k   2ik  2  2   2i  2  z  z z  z c  →  2RW  RW 2 RW  0Nd12  12   12 2i 12 t2 t    (1.15) Intheslowly-varyingenvelopeapproximation(SVEA):  k ; z  2 k ; z z2 (1.16a)   ; t  2  t t2 (1.16b) Similarly,therotating-wavevariablesareslowly-varyingbydefinition: RW RW 12  12 (1.17) t UsingtheSVEAandRWAandnotingthatk=ωis/c c1/c  0 ,wefind c,slowly-varyingwaveequation: i → RW    → 1 (1.18) z ct  2 c Nd1212 or,intermsoftheRabifrequency,  (1.19)  2iRW, z Here 1  c t   2N dc12 , 12 (1.20) istheatom-fieldcouplingparameter 1.1.6 Inhomogeneousbroadening Tocalculateforthisinhomogeneousbroadening,weneedtoaverage ρ12t h r o u g h thepolarization in Maxwell'sequation: 12 (1.21)  12g   d  Thea p p r o p r i a t e d i s t r i b u t i o n f u n c t i o n , g ( ),c a n b e d e r i v e d f r o m t h e Maxwell-Boltzmanndistributionforgases.Intermsofthedetunings,itis:   0 2 p p , g    exp    kv m    kvm   (1.22) where k2/c ist h e w a v e n u m b e vm ist h e m o s t p r o b a b l e 2kBT / m r, velocitythatcorrespondstoaDopplerwidthDgiven D 2l n 2vmp/ c0 (1.23) 1.2 Interactionbetweenthree-levelatomsandlight In this section, we consider the cascade three-level atomic mediumexcited by laser field and coupling laser field as in Figure 1.3 The weaklaserdrivetotransitions|1| 2andthestrongcouplinglaserfieldexcited transition|2|3.Wedenote 21 and 32 arethepopulationdecayrateof thestates 2a n d 3, respectively.Wewritethesumofthetwofieldsinthe carrier-envelopeformas: → kz t →   → z,t ei  c.c i  k z  t (1.24)  z,t e Ez ,t p p p c c c Fig.1.3.Thecascadethree-levelatomschemeexcitedwithlaserandcouplinglaserfield In the framework of semiclassical theory, the evolution of densitymatrixoperatorρofofthesystemcanberepresentedbythefollowingLiouvil le equation:  i  (1.25)   H,  t Here,HisthetotalHamiltonian:  1  →→ H d21E The  identified,  d12E→  → → d32E  → → d23E    nmLnm  (1.26)  3  n,m , (1.27) isthepopulationdecayratefromlevel here, n m isthecoherencedecayrate,  L    nmnm here,  nm n  2 nm   mn m tolevel n , and nm ,   nm nmm n (1.28) nmm n isthedensity matrixoperatorsifn =mandtheelectric m dipoleoperatorsifnm 1.2.1 Hamiltonianinteractionintherotatingwaveapproximation We make the rotating wave approximation (RWA) as before For thethree-level cascade-system, the unitary transformation that takes us to therotating frame is:  i k pz  t e t U ei2    p TheHamiltoniantransformsas HRW UHU†i 0 0 e ikczct     (1.29)  U † U, t (1.30) andis, therefore: H RW p → → i k pz  t  d E21 e    d→ E→ e i k pz  t 12   → →0 p p      d →  d.23E e c c  E e   21p d* →→ 12p d→ * → 32c  c  c c   p   → →   d p  23c   c      *     → p→ RWA H  d  ,(1.31) ikz t  we find:     →  ikz t    p  *  c2   c ,(1.32) 2   c   →→ Where, z,t  p 2d12p z,t   z,t  dcc z,t ,  c is the Rabi frequenciesoftheprobeandcouplingpulses,respectively 1.2.2 Thelaserpulsepropagationequationsintheslowlyvaryingenvelope approximation Intherotationalwavereferencesystem,wederivethewaveequationforeach field:    2i RW, 1 p12 z ct p  RW    2i c2  z c t c (1.33a) (1.33b) Here,t h e a t o m f i e l d c o u p l i n g coNn ds t a2 n t s ( a l s o rNe df e r2 r e d t o a s p r o p a g a t i o n p12 constants)are  p  2 0c c23 and c 2 0c ,respectively 1.2.3 Coherent populationtrapping 1.2.4 Electromagneticallyinducedtransparency The EIT is a quantum interfering effect that leads to the propagationoflightthroughthemediumwithoutbeingabsorbedintheresonantfr equencyoftheatom.EITcanbeexplainedbasedonthequantuminterferenceofthe probabilityamplitudesoccursbetweenthedifferentexcitedp a t h w a y s i n a n a t omicsystemasshowninFigure1.4.Oneterm, whichisduetoexcitationbytheresonantfield  p only,i.e.,adirectpath fromstate tostate ;Anadditionalterm,whichisduetothepresence oft h e s e c o n d f i el c, i e , a n i n d i r e c t p a t h f r o m s t a tostate to d te state andb a c k t o t h e s t a t H e n c e , t h e t o t a l t r a n s i t i o n a m p l e itude vanishest h a t l e a d i n g t o t h e t r a n s p a r e n c y f o r t h e p r o b e l a s e r b e a

Ngày đăng: 17/08/2023, 17:28

w