1. Trang chủ
  2. » Thể loại khác

Tuyển Tập Câu Cuối Hình Học Thi Vào 10 Môn Toán Cả Nước Năm Học 2020-2021.Docx

145 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 145
Dung lượng 4,32 MB

Nội dung

Chương trình toán THCS là nền tảng cho giai đoạn chuyển cấp và có tác động lớn đến việc thi vào THPT. Về mảng hình học thì chiếm tương đối ít điểm hơn so với mảng đại số, song lại có độ khó nhất định đòi hỏi việc luyện đề để làm quen với nhiều dạng bài, kiểu hình, cách phân tích để chọn hướng giải bài hiệu quả nhất.

BỘ ĐỀ CÂU CUỐI HÌNH HỌC TUYỂN SINH VÀO LỚP 10 MƠN TỐN THPT CÁC TỈNH TRÊN CẢ NƯỚC NĂM HỌC 2020-2021 PHẦN 1: CHỨNG MINH ĐIỂM THẲNG HÀNG, ĐỒNG QUY CẦN THƠ Câu (2,5 điểm) Cho tam giác ABC có ba góc nhọn AB  AC Vẽ đường cao AH , đường trịn đường kính HB cắt AB D đường trịn đường kính HC cắt AC E a) Chứng minh tứ giác ADHE nội tiếp b) Gọi I giao điểm hai đường thẳng DE BC Chứng minh IH ID.IE c) Gọi M , N giao điểm đường thẳng DE với đường tròn đường kính HB đường trịn đường kính HC Chứng minh giao điểm hai đường thẳng BM CN nằm đường thẳng AH ĐÁP ÁN Câu A D I B K M N H E C a) Chứng minh tứ giác ADHE nội tiếp GV: Nguyễn Vy Linh   Ta có: BDH góc nội tiếp chắn nửa đường trịn đường kính BH  BDH 90   CEH góc nội tiếp chắn nửa đường trịn đường kính CH  CEH 90  ADH   AEH 900  900 1800  ADHE ADHE Xét tứ giác ta có: tứ giác nội tiếp b) Chứng minh: IH ID.IE  Ta có: ADHE tứ giác nội tiếp (cmt)  DAH DEH (cùng chắn DH )    Hay BAH IEH ,lại có BAH BHD (cùng phụ với DBH )      BHD IEH BAH hay BHD   IEH   Xét IDH IHE ta có: I chung; IHD IEH (cmt ) ID IH   ID.IE IH (dfcm) IH IE c) Chứng minh giao điểm hai đường thẳng BM , CN nằm đường thẳng AH Gọi giao điểm BM CN K  IDH IHE ( g g )  Ta có: BMH góc nội tiếp chắn nửa đường trịn đường kính BH  BMH 90 Hay MH  BK , chứng minh tương tự  NH  KC   Vì ADHE tứ giác nội tiếp (cmt) nên DAH DEH (cùng chắn cung DH ) hay   BAH MEH Vì BDMH tư giác nội tiếp đường trịn đường kính BD, MH    HME DBH (góc ngồi đỉnh góc đỉnh đối diện) 0       Hay EMH  ABH mà BAH  ABH 90  MBH  HME 90   MHE 900 hay MH  HE Mà HE  AC  MH / / AC MH  BK cmt   BK  AC , chứng minh tương tự: CK  AB  K trực tâm ABC  K  AH (dfcm) Lại có: ĐỒNG NAI O Câu (2,75 điểm) Cho tam giác nhọn ABC nội tiếp đường trịn   có hai đường cao BE , CF cắt trực tâm H , AB  AC Vẽ đường kính AD O  Gọi K giao GV: Nguyễn Vy Linh O ,K điểm đường thẳng AH với đường tròn   khác A Gọi L, P giao điểm O ,K đường thẳng AH với đường tròn   khác A Gọi L, P giao điểm hai đường thẳng BC EF , AC KD 1) Chứng minh tứ giác EHKP nội tiếp đường tròn tâm I đường tròn thuộc đường thẳng BC 2) Gọi M trung điểm đoạn thẳng BC Chứng minh AH 2OM 3) Gọi T giao điểm đường tròn   với đường tròn ngoại tiếp tam giác EFK ,T khác K Chứng minh ba điểm L, K , T thẳng hàng ĐÁP ÁN Câu O A E F B L O H J M I C D K T' P 1) Chứng minh EHKP tứ giác nội tiếp  Ta có: BE đường cao ABC  BE  AC hay BEC HEC 90 AKD góc nội tiếp chắn nửa đường trịn  AKD 90 0 Xét tứ giác EHKP có: HEP  HKP 90  90 180 , mà hai góc đối diện nên EHKP tứ giác nội tiếp (đpcm) Có HKP 90 góc nội tiếp chắn cung HP  HP đường kính đường trịn ngoại tiếp tứ giác EHKP  Tâm I đường tròn trung điểm HP Gọi J giao điểm AK BC   Ta có: HBJ HAC (cùng phụ với ACB) GV: Nguyễn Vy Linh KBC KAC (hai góc nơi tiếp chắn cung KC ) hay JBK HAC  HBJ JBK HAC   BJ phân giác HBK    Ta có: AH đường cao đường cao BHK Xét BHK ta có: BJ vừa đường cao, vừa đường phân giác từ đỉnh B tam giác  BHK cân B BJ đường trung tuyến BHK  J trung điểm HK Gọi I ' giao điểm BC HP ABC  AH  BC  J  BJ AJ  BC  J  mà KP  AH  K   BC / / KP hay JI '/ / KP Xét HKP ta có: J trung điểm HK (cmt ); IJ / / KP (cmt )  I ' J đường trung bình HKP  I ' trung điểm HP  I I ' hay I  BC (dfcm) 2) Chứng minh AH 2OM Ta có:  AB  BD   AC  CD Ta có: ABD ACD 90 (góc nội tiếp chắn nửa đường trịn)   AB  EF ( gt ) CF / / BD  BH / / CD      BE  AC ( gt )  BE / /CD CH / / BD  BDCH Mà hình bình hành  BC cắt HD trung điểm đường, lại có M trung điểm BC ( gt )  M trung điểm HD Xét AHD ta có: O, M trung điểm AD, HD  OM đường trung bình AHD OM / / AH     AH 2OM (dfcm) OM  AH  3) Chứng minh L, K , T thẳng hàng O Gọi T ' giao điểm tia LK với đường tròn    Xét tứ giác BFEC ta có: BFC BEC 90 mà đỉnh F , E đỉnh kề   Nên BFEC tứ giác nội tiếp  LFB LCE (góc ngồi đỉnh góc đỉnh đối diện) Xét LFB LCE ta có: chung; L LFB LCE (cmt )  LFB LCE ( g g )  LF LB   LE.LF LB.LC LC LE GV: Nguyễn Vy Linh O Ta có tứ giác BCT ' K nội tiếp đường trịn    LKB LCT ' (góc ngồi đỉnh góc đỉnh đối diện)    Xét LBK LCT ' ta có: L chung; LKB LCT '(cmt )  LBK LT ' C ( g  g ) LB LK LF LK   LB.LC LK LT '  LE.LF LK LT ' LB.LC    LT ' LC LT ' LE Xét LFK LT ' E ta có:  ' chung ; LF  LK  LFK LT ' E (c  g  c)  LFK  LET  ' ELT LT ' LE   EFKT ' tứ giác nội tiếp (tứ giác có góc ngồi góc đỉnh đối diện)  T ' thuộc đường tròn ngoại tiếp tam giác EFK  T T '  L, K , T thẳng hàng.(đpcm) HÀ NỘI Bài IV (3,0 điểm) Cho tam giác có ba góc nhọn đường cao Gọi chân đường vng góc kẻ từ điểm đến đường thẳng 1) Chứng minh tứ giác tứ giác nội tiếp 2) Chứng minh 3) Gọi chân đường vng góc kẻ từ điểm đến đường thẳng điểm đoạn thẳng Bài IV Chứng minh ba điểm ĐÁP ÁN trung ba điểm thẳng hàng GV: Nguyễn Vy Linh A H2 F I E O B K 1) Chứng minh C tứ giác nội tiếp Ta có : Tứ giác có nên tứ giác nội tiếp (tứ giác có tổng hai góc đối 2) Chứng minh Theo câu a) tứ giác Ta có: nội tiếp nên (cùng chắn cung vng H) vuông E) nên Mà Xét (cùng phụ với nên có: chung; (hai cặp cạnh tương ứng tỉ lệ) a) Chứng minh thẳng hàng GV: Nguyễn Vy Linh Gọi giao điểm Xét tứ giác có : nên tứ giác nội tiếp (tứ giác có đỉnh kề nhìn cạnh góc nhau) (cùng chắn Ta có: (so le trong) (cùng vng góc với Theo câu a, tứ giác nội tiếp nên (cùng chắn Từ (1) (2) ta suy có nên tam giác cân Lại có: ; Nên Từ hay tam giác vng H) cân trung điểm Do nên ba điểm thẳng hàng (đpcm) CHUYÊN KHOA HỌC TỰ NHIÊN (HÀ NỘI) Câu III (3 điểm) Cho tam giác trịn (O) Điểm có góc nhỏ ba góc tam giác nội tiếp đường thuộc cạnh cho thuộc (O) cho đường thẳng phân giác Lấy điểm song song với đường thẳng 1) Chứng minh 2) Gọi giao điểm đường thẳng với đường thẳng Chứng minh bốn điểm 3) Gọi thuộc đường tròn theo thứ tự trung điểm đoạn thẳng đường thẳng Chứng minh đồng quy ĐÁP ÁN Câu III GV: Nguyễn Vy Linh A Q P K E F N M O C D B 1) Chứng minh Ta có: (so le ; (so le (trong đường trịn, hai góc nội tiếp chắn hai cung nhau) Vậy (trong đường tròn, hai dây căng hai cung nhau) 2) Chứng minh điểm Ta có: thuộc đường trịn (góc có đỉnh bên đường trịn) (góc nội tiếp nửa số đo cung bị chắn) GV: Nguyễn Vy Linh Vậy tứ giác tứ giác nội tiếp (tứ giác có góc ngồi góc đỉnh đối diện nhau) hay thuộc đường tròn 3) Chứng minh đường thẳng đồng quy Áp dụng định lý Mê-lê-na-uýt tam giác (do Gọi cát tuyến , ta có: trung điểm nên Ta chứng minh Áp dụng định lý Mê-lê-na-uýt tam giác (Do cát tuyến ta có: trung điểm Ta chứng minh số nhau) Vì (tính chất dãy tỉ nên áp dụng định lý Ta – let ta có: Lại có : Xét nên (định lý đường phân giác), đó: có: chung Từ (1) (2) Tiếp tục áp dụng định lý đường phân giác tam giác ta có: GV: Nguyễn Vy Linh Từ (3) (4) ta suy Từ suy Vậy chứng minh, tức , đồng quy K KHÁNH HÒA O và điểm I nằm ngồi đường trịn Qua I kẻ O hai tiếp tuyến IM IN với đường tròn   Gọi K điểm đối xứng với M qua O O Đường thẳng IK cắt đường tròn   H Câu (3,00 điểm) Cho đường tròn a) Chứng minh tứ giác IMON nội tiếp đường tròn b) Chứng minh IM IN IH IK c) Kẻ NP vng góc với MK Chứng minh đường thẳng IK qua trung điểm NP ĐÁP ÁN Câu M O I H N 10 P K GV: Nguyễn Vy Linh

Ngày đăng: 31/07/2023, 10:54

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w