ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN TRẦN THỊ HUYỀN GIANG MỘT SỐ VẤN ĐỀ VỀ DÒNG CHẢY LỚP BIÊN DẠNG FALKNER – SKAN TÓM TẮT LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – Năm 2015 Header Page 1[.]
Header Page of 107 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - TRẦN THỊ HUYỀN GIANG MỘT SỐ VẤN ĐỀ VỀ DÒNG CHẢY LỚP BIÊN DẠNG FALKNER – SKAN TÓM TẮT LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – Năm 2015 Footer Page of 107 Header Page of 107 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - TRẦN THỊ HUYỀN GIANG MỘT SỐ VẤN ĐỀ VỀ DÒNG CHẢY LỚP BIÊN DẠNG FALKNER – SKAN Chuyên ngành: Cơ học chất lỏng Mã số: 60440108 TÓM TẮT LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS Trần Văn Trản Hà Nội – Năm 2015 Footer Page of 107 Header Page of 107 LỜI CẢM ƠN Em xin gửi lời cảm ơn sâu sắc đến PGS – TS Trần Văn Trản, người thầy tận tình hướng dẫn, vạch cho em hướng đi, đưa nhận xét sửa chữa, bổ sung cho em nhiều kiến thức quý báu để em bước hoàn thành luận văn Em xin bày tỏ lòng biết ơn đến thầy khoa Tốn – Cơ – Tin học, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội trang bị cho em kiến thức giúp em hoàn thành luận văn Em xin chân thành cảm ơn gia đình bạn bè ln động viên, tạo điều kiện tốt cho em suốt thời gian thực luận văn Em xin chân thành cảm ơn! Hà Nội, ngày 22 tháng 07 năm 2015 Học viên Trần Thị Huyền Giang Footer Page of 107 Header Page of 107 MỤC LỤC Mở đầu ………………………………………………………………………….3 Chương Dòng chảy lớp biên ……………………………………………… 1.1 Ngắn gọn dòng chảy lớp biên ……………………………………………5 1.2 Nghiệm đồng dạng hệ phương trình lớp biên ………………………….14 1.3 Thu nhận tốn mơ tả dịng chảy Falkner – Skan……………………… 16 Chương Một số tính chất chung nghiệm tốn dịng chảy Falkner – Skan ……………………………………………………………… 21 2.1 Về tồn nghiệm tốn …………………………… 21 2.2 Về ổn định tuyến tính nghiệm …………………………………………22 2.3 Nghiệm phân nhánh toán ………………………………………… 26 Chương Giải số tốn dịng chảy lớp biên Falkner – Skan………… 28 3.1 Phương pháp giải với biên chưa xác định cách đưa toán hai biên xác định ………………………………………………………………… 28 3.2 Phương pháp sai phân hữu hạn giải hệ phương trình Prandtl …………….32 Kết luận……………………………………………………………………… 39 Tài liệu tham khảo…………………………………………………………….40 Phụ lục………………………………………………………………………….41 Footer Page of 107 Header Page of 107 MỞ ĐẦU Vật thể có cấu trúc hình nón trịn xoay thường gặp thiết bị bay máy bay, tên lửa có ưu điểm khí động lực học tốc độ âm Vì ứng dụng quan trọng lý thuyết lớp biên cho vật thể lĩnh vực chế tạo vũ khí đạn dược Lý thuyết lớp biên học chất lỏng có vị trí đặc biệt nghiên cứu lý thuyết lẫn ứng dụng thực tiễn Một kết bật lý thuyết lớp biên tồn nghiệm đồng dạng nhiều trường hợp mà trường hợp vật thể hình nón điển hình Đối với nghiệm đồng dạng hệ phương trình lớp biên cho trường hợp hai chiều dẫn đến phương trình vi phân thường Từ nghiên cứu tính chất chung nghiệm tính tốn cách dễ dàng Dịng chảy lớp biên bề mặt hình nón với tên dịng chảy Falkner – Skan nghiên cứu từ lâu Do ứng dụng quan trọng nghiên cứu dòng chảy lĩnh vực quân nên quan tâm nhiều từ năm sau chiến tranh giới thứ hai Hiện nghiên cứu sâu tốn dịng chảy Falkner – Skan với yếu tố nhiệt độ dịng khí cao, tốc độ bay siêu âm, … nhận ý đặc biệt chuyên gia Luận văn tập trung vào nội dung mơ tả tốn từ khía cạnh học, tốn học ứng dụng hai phương pháp tính khác hồn tồn chất để thu nhận lời giải trường hợp cổ điển, nghĩa chưa tính đến yếu tố nhiệt Footer Page of 107 Header Page of 107 Luận văn gồm ba chương: Chương 1: Dòng chảy Falkner – Skan Trong chương trình bày nội dung lý thuyết lớp biên, nghiệm đồng dạng cách thu nhận tốn Chương 2: Một số tính chất chung nghiệm tốn dịng chảy Falkner – Skan Đưa số tính chất chung nghiệm tốn dịng chảy lớp biên: tồn nghiệm toán, ổn định tuyến tính nghiệm nghiệm phân nhánh tốn Chương 3: Giải số tốn dịng chảy lớp biên Falkner – Skan Thực giải số toán dòng chảy lớp biên Falkner – Skan hai phương pháp tính khác hồn tồn chất, nêu kết nhận so sánh với Footer Page of 107 Header Page of 107 Chương DÒNG CHẢY FALKNER – SKAN 1.1 Ngắn gọn lý thuyết lớp biên Chúng ta quan tâm, khảo sát dòng chảy với độ nhớt nhỏ số Reynolds lớn Một đóng góp quan trọng cho nghiên cứu chuyển động chất lỏng đưa L.Prand vào năm 1904 ơng giải thích ảnh hưởng độ nhớt dòng chảy với số Reynolds lớn cách đơn giản phương trình Navier – Stokes để xấp xỉ nghiệm cho trường hợp Hình Dịng chảy lớp biên dọc theo tường Để đơn giản phương trình, coi dòng chảy hai chiều chất lỏng với độ nhớt nhỏ bao quanh vật trụ với hai biên mỏng giống hình Footer Page of 107 Header Page of 107 Với bỏ qua vùng lân cận trực tiếp bề mặt vật rắn, vận tốc bậc vận tốc dòng tự do, v , kiểu đường dòng phân bố vận tốc sai lệch nhỏ dịng chảy khơng có ma sát Tuy nhiên, nghiên cứu chi tiết rằng, khơng giống dịng chảy có thế, dịng chảy khơng trượt qua tường mà bám vào Sự chuyển từ vận tốc mặt tường tới đạt giá trị đủ lớn khoảng cách tính từ bề mặt vật rắn tạo nên lớp mỏng gọi lớp biên Với dịng chảy có hai vùng cần xem xét, chí phân chia ranh giới chúng không thật rõ ràng Lớp mỏng vùng lân cận trực tiếp vật thể mà gradient vận tốc theo chiều vng góc với tường, u lớn Trong miền y độ nhớt nhỏ dòng chảy ảnh hưởng vào việc tạo nên ứng suất trượt u y Trong miền cịn lại gradient vận tốc khơng lớn xuất ảnh hưởng vận tốc không quan trọng Trong miền dịng chảy khơng ma sát Tổng quan nói độ dày lớp biên biến thiên vận tốc, xác hơn, giảm số Reynolds tăng Có thể thấy từ vài nghiệm xác phương trình Navier – Stokes độ dày lớp biên tỷ lệ với bậc hai độ nhớt động học Khi đơn giản hóa phương trình Navier – Stokes, ta giả sử độ dày lớp biên nhỏ so với chiều dài đặc trưng, L vật thể: L Trong miền nghiệm Footer Page of 107 Header Page of 107 thu từ phương trình lớp biên gần áp dụng cho số Reynolds đủ lớn Bây giờ, nghiên cứu cách đơn giản phương trình Navier – Stokes, để hoàn thành chúng, ước lượng độ lớn đại lượng Trong tốn hai chiều hình 1, ta giả thiết tường phẳng trùng với trục x, trục y vng góc với Ta viết lại phương trình Navier – Stokes dạng khơng thứ nguyên cách lấy vận tốc dòng tự V, độ dài vật L làm đại lượng đặc trưng Khi thời gian đặc trưng đại lượng L áp suất trở thành không thứ nguyên chia cho V V Khi đại lượng R VL VL số Reynolds Phương trình liên tục phương trình Navier – Stokes cho dịng chảy phẳng có dạng sau: u v 0 x y (1.1) u u u p 2u 2u u v t x y x R x y (1.2) v v v p v v u v t x y y R x y (1.3) Điều kiện biên khơng có trượt chất lỏng tường: u v với y u U y Footer Page of 107 Header Page 10 of 107 Với giả thiết độ dày lớp biên không thứ nguyên , nhỏ so với L ( 1), ta giữ lại đại lượng có bậc với Chúng ta ước lượng độ lớn đại lượng để bỏ qua đại lượng nhỏ đơn giản phương trình Vì trình liên tục u bậc nên theo phương x v bậc một, mặt tường v lớp biên y v bậc Vì v 2u 2u bậc , nên bậc x x x Chúng ta giả thiết gia tốc u u bậc với đại lượng u , x t nghĩa gia tốc tức thời xuất sóng áp suất lớn bị loại trừ Để phù hợp với đối số trước, số đại lượng nhớt phải bậc độ lớn với đại lượng quán tính, vùng lân cận trực tiếp với mặt tường nhỏ so với đại lượng Vì đạo hàm cấp hai vận tốc phải lớn gần R mặt tường Để phù hợp với giả thiết trước ta áp dụng 2u 2v Vì vectơ vận tốc song song với tường tăng từ mặt y y tường có giá trị dịng tự qua lớp có độ dày Ta có 2u y v Khi y 2v y u y Nếu giá trị đưa vào phương trình (1.2), (1.3), từ phương trình thứ chuyển động suy Footer Page 10 of 107 Header Page 54 of 107 enddo endif enddo return END subroutine VF(x,y,z) real(8) x,y(4),z(4),beta ! beta=0 for Blasius common beta !beta=0.5d00 z(1)=y(2)*y(4) z(2)=y(3)*y(4) !z(3)=-0.5d00*y(1)*Y(3)*y(4) ! for Blasius z(3)=(-y(1)*y(3)-beta*(1.d00-y(2)*y(2)))*y(4) z(4)=0 return end Subroutine LU(n,a,m,b,ntype) integer n,m,ntype real(8) a(n,n),b(n,m),c(n,n) integer i,j,k,l,ll,idd(100) ! n: number of unknown; a :matrix of coeff.(input) ! m: number of right parts; 52 Footer Page 54 of 107 Header Page 55 of 107 ! b: rightparts (input); b: solution (output) ! ntype=0 :calculating solution only; ! ntype=1: calculating inverse matrix a (output) ! ntype=2: calculating both solution and inverse matrix real(8) s,eps eps=1e-12 j=1,n-1 k=j i=j+1,n if(abs(a(i,j)).gt.abs(a(k,j))) k=i enddo idd(j)=k s=a(k,j) a(k,j)=a(j,j) a(j,j)=s if(abs(s).lt.eps) pause 'singular A' i=j+1,n a(i,j)=-a(i,j)/s enddo l=j+1,n s=a(k,l) a(k,l)=a(j,l) a(j,l)=s i=j+1,n 53 Footer Page 55 of 107 Header Page 56 of 107 a(i,l)=a(i,l)+a(i,j)*s enddo enddo enddo if(ntype.eq.0.or.ntype.eq.2) then l=1,m j=1,n-1 k=idd(j) s=b(k,l) b(k,l)=b(j,l) b(j,l)=s i=j+1,n b(i,l)=b(i,l)+a(i,j)*s enddo enddo i=1,n-1 k=n-i j=k+1 b(j,l)=b(j,l)/a(j,j) s=-b(j,l) ll=1,k b(ll,l)=b(ll,l)+a(ll,j)*s enddo enddo 54 Footer Page 56 of 107 Header Page 57 of 107 b(1,l)=b(1,l)/a(1,1) enddo if(ntype.eq.0)goto 50 if(ntype.eq.2) goto 40 endif 40 i=1,n j=1,n c(i,j)=0 enddo c(i,i)=1 enddo l=1,n j=1,n-1 k=idd(j) s=c(k,l) c(k,l)=c(j,l) c(j,l)=s i=j+1,n c(i,l)=c(i,l)+a(i,j)*s enddo enddo i=1,n-1 k=n-i j=k+1 55 Footer Page 57 of 107 Header Page 58 of 107 c(j,l)=c(j,l)/a(j,j) s=-c(j,l) ll=1,k c(ll,l)=c(ll,l)+a(ll,j)*s enddo enddo c(1,l)=c(1,l)/a(1,1) enddo i=1,n j=1,n a(i,j)=c(i,j) enddo enddo 50 return END subroutine PNS(n,xx,yy,x,y) integer n,i,j real(8) xx(n),yy(n),x,y,a,b,p,q,r,t j=1,n-1 if(x==xx(j))then y=yy(j) return endif 56 Footer Page 58 of 107 Header Page 59 of 107 if(x==xx(j+1))then y=yy(j+1) return endif if((x-xx(j))*(x-xx(j+1)).lt.0.)then a=xx(j) b=xx(j+1) p=yy(j) q=yy(j+1) r=(q-p)/(b-a) t=(p*b-q*a)/(b-a) y=r*x+t endif enddo return END subroutine RK4(n,h,m,ya,yb) !this subroutine is writen for here purpose only integer n,m real (8) h,ya(n),yb(n,m) integer i,j,k real (8) x,x1,x2,k1(n),k2(n),k3(n),k4(n),z(n) i=1,n 57 Footer Page 59 of 107 Header Page 60 of 107 yb(i,1)=ya(i) enddo k=1,m-1 x=0.d00+(k-1)*h;x1=x+0.5*h;x2=x+h call VP(x,ya,k1) z=ya+0.5*h*k1 call VP(x1,z,k2) z=ya+0.5*h*k2 call VP(x1,z,k3) z=ya+h*k3 call VP(x2,z,k4) z=ya+h*(k1+2.*(k2+k3)+k4)/6 i=1,n yb(i,k+1)=z(i) ya(i)=z(i) enddo if(abs(z(2)-1.d00).le.1.d-7)then ea=k*h write(*,*)'k=',k,'ea=',ea return endif enddo return END 58 Footer Page 60 of 107 Header Page 61 of 107 subroutine VP(x,y,z) real(8) x,y(3),z(3),beta ! beta=0 for Blasius common beta z(1)=y(2) z(2)=y(3) !z(3)=-0.5d00*y(1)*Y(3) ! for Blasius z(3)=-y(1)*y(3)-beta*(1.d00-y(2)*y(2)) return end Phụ lục B Chương trình giải số tốn lớp biên dịng chảy Falkner – Skan ổn định ! FALKNER-SKAN LAMINAR-BOUNDARY LAYER ! BATA=0.5 DIMENSION UP(65),U(41),UM(41),V(41),VM(41),Y(41),RHS(65),B(5,65),UBX(41),UB(24) ,VB(24),YZ(24),VBX(41) DATA UB/0.0000,0.0903,0.1756,0.2559,0.3311,0.4015,0.4669,0.5275,0.5833,0.6344,0 6811,0.7614,0.8258,0.8761,0.9142,0.9422,0.9623,0.9853,0.9972,0.9995,1.0000, 1.0000,1.0000,1.0000/ DATA VB/0.,0.,-0.0003,-0.0011,-0.0027,-0.0052,-0.0089,-0.0142,-0.0211,0.0298,-0.0406,-0.0688,-0.1065,-0.1541,-0.2114,-0.2778,-0.3521,-0.5198,0.8008,-1.0965,-1.3954,-1.6954,-2.0954,-2.4954/ 59 Footer Page 61 of 107 Header Page 62 of 107 DATA YZ/0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.6,3.2,3.8,4 4,5.0,5.8,6.6/ OPEN(1,FILE='LAMBL.DAT') OPEN(6,FILE='LAMBL.OUT') OPEN(11,FILE='COMPARE.OUT') READ(1,1)JMAX,NMAX,DYM,RY,XST,BETA,RE,DX FORMAT(2I5,4F5.2,2E10.3) WRITE(6,2)BETA FORMAT('FALKNER-SKAN SOLUTION,BETA=',F5.2) WRITE(6,3)JMAX,DYM,RY FORMAT(' JMAX= ',I3,' DYM= ',F5.2,' RY= ',F5.2) WRITE(6,4)NMAX,DX,XST,RE FORMAT(' NMAX= ',I3,' DX= ',E10.3,' XST= ',F5.2,' RE= ',E10.3,//) WRITE(6,*)'N WRITE(11,*)'J X EXCF U(J) UBX(J) CF DISP V(j) Y(1)=0 DY=DYM/RY DO J=2,JMAX DY=DY*RY Y(J)=Y(J-1)+DY ENDDO JMAp=JMAX-1 AJP=JMAP 60 Footer Page 62 of 107 UE' VBX(j)' Header Page 63 of 107 RYP=RY+1 BETP=BETA/(2.-BETA) SQRE=SQRT(RE) ! SET INITIAL VELOCITY PROFILES UEST=XST**BETP FALKS=SQRT((2.-BETA)*XST/UEST) CALL LAG(YZ,UB,Y,UM,XST,FALKS,JMAX) CALL LAG(YZ,VB,Y,VM,XST,FALKS,JMAX) X=XST+DX UE=X**BETP FALK=SQRT((2.-BETA)*X/UE) CALL LAG(YZ,UB,Y,U,X,FALK,JMAX) CALL LAG(YZ,VB,Y,V,X,FALK,JMAX) DO J=2,JMAX UM(J)=UM(J)*UEST U(J)=U(J)*UE VM(J)=VM(J)/FALKS V(J)=V(J)/FALK ENDDO UP(1)=0.;U(1)=0.;UM(1)=0.;V(1)=0.;VM(1)=0 DO N=1,NMAX X=X+DX UE=X**BETP UEX=BETP*UE/X 61 Footer Page 63 of 107 Header Page 64 of 107 DO J=2,JMAP DY=Y(J)-Y(J-1) JM=J-1 P=(2.*V(J)-VM(J))*DX/RYP/DY Q=2.*DX/(RYP*DY*DY) B(2,JM)=-P*RY-Q B(3,JM)=1.5*(2.*U(J)-UM(J))+Q*RYP/RY+P*(RY-1./RY) B(4,JM)=P/RY-Q/RY RHS(JM)=UE*UEX*DX+(2.*U(J)-0.5*UM(J))*(2.*U(J)-UM(J)) ENDDO RHS(JM)=RHS(JM)-B(4,JM)*UE B(4,JM)=0.;B(2,1)=0 CALL BANFAC(B,JM) CALL BANSOL(RHS,UP,B,JM) UP(JMAP)=UE DUM=0.;SUM=0.5*(Y(2)-Y(1)) DO J=2,JMAX DUMH=DUM VM(J)=V(J) DY=Y(J)-Y(J-1) DUM=1.5*UP(J-1)-2.*U(J)+0.5*UM(J) V(J)=V(J-1)-0.5*(DY/DX)*(DUM+DUMH) UM(J)=U(J) U(J)=UP(J-1) 62 Footer Page 64 of 107 Header Page 65 of 107 IF(J.EQ.JMAX)GOTO SUM=SUM+0.5*(1.-U(J)/UE)*(Y(J+1)-Y(J-1)) CONTINUE DISP=SUM/SQRE UYZ=(RYP*U(2)-U(3)/RYP)/RY/(Y(2)-Y(1)) CF=2.*UYZ/SQRE/UE/UE FDD=0.9278 DUM=0.25*X*UE*RE*(2.-BETA) EXCF=FDD/SQRT(DUM) WRITE(6,9)N,X,EXCF,CF,DISP,UE FORMAT(I3,2x,F4.2,2x,F9.6,2x,F9.6,2X,F9.6,2x,F6.3) ENDDO ! COMPARE SOLUTION WITH EXACT FALK=SQRT((2.-BETA)*X/UE) CALL LAG(YZ,UB,Y,UBX,X,FALK,JMAX) CALL LAG(YZ,VB,Y,VBX,X,FALK,JMAX) SUM=0 DO J=2,JMAX UBX(J)=UBX(J)*UE ; VBX(J)=VBX(J)/FALK SUM=SUM+(U(J)-UBX(J))**2 WRITE(11,21)J,U(J),UBX(J),V(j),VBX(j) ENDDO 21 FORMAT(I3, 4(F10.5,1X)) 63 Footer Page 65 of 107 Header Page 66 of 107 RMS=SQRT(SUM/AJP) WRITE(6,12)RMS 12 FORMAT('RMS=',E10.3) !13 CONTINUE STOP END SUBROUTINE BANFAC(B,N) DIMENSION B(5,65) NP=N-1 DO J=1,NP JP=J+1 B(2,JP)=B(2,JP)/B(3,J) B(3,JP)=B(3,JP)-B(2,JP)*B(4,J) ENDDO RETURN END SUBROUTINE BANSOL(R,X,B,N) DIMENSION R(65),X(65),B(5,65) NP=N-1 DO J=1,NP JP=J+1 R(JP)=R(JP)-B(2,JP)*R(J) 64 Footer Page 66 of 107 Header Page 67 of 107 ENDDO X(N)=R(N)/B(3,N) DO J=1,NP JK=N-J X(JK)=(R(JK)-B(4,JK)*X(JK+1))/B(3,JK) ENDDO RETURN END SUBROUTINE LAG(YZ,QB,Y,Q,X,FALK,JMAX) ! OBTAIN THE F.S.PROFILE(U,V)AT DIFFERENT X DIMENSION YZ(24),YB(24),QB(24),Y(41),Q(41) DO I=1,24 YB(I)=YZ(I)*FALK ENDDO Q(1)=0 DO I=2,JMAX DO J=1,23 IF(J==23)GOTO IF(Y(I).GT.YB(J))GOTO JS=J IF(JS.LT.2)JS=2 Q(I)=0 DO K=1,3 65 Footer Page 67 of 107 Header Page 68 of 107 CL=1;KK=JS-2+K DO L=1,3 LL=JS-2+L IF(LL==KK)GOTO CL=CL*(Y(I)-YB(LL))/(YB(KK)-YB(LL)) CONTINUE Q(I)=Q(I)+CL*QB(KK) GOTO CONTINUE CONTINUE RETURN END 66 Footer Page 68 of 107