1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Chuyên đề toán tổng hợp thpt (515)

52 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 52
Dung lượng 355,1 KB

Nội dung

CHUYÊN ĐỀ TOÁN TỔNG HỢP THPT Chuyên đề √ Câu Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 50 C |z| = 10 D |z| = A |z| = 33 Câu Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A 5π B 25π C D Câu Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C D −1 Câu Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 22 B r = C r = D r = 20 √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B 10 C D Câu (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| + 2|z√− 1| √ √ √ A max T = 10 B max T = C max T = D max T = Câu Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài MN √ √ D MN = A MN = B MN = C MN = Câu Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (1; 2) C (0; 1) D (−1; 2) y−1 z−1 x−2 Câu 10 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 11 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà:        x=5+t x = + 2t x = + 2t x = + 2t             y = −1 + t y = −1 + 3t y = + 2t y = + 3t C  D  A  B           z = −1 + t  z = −1 + 3t  z = −1 + t  z = + 3t Câu 12 Với a số thực dương tùy ý, ln(3a) − ln(2a) A lna B ln C ln(6a2 ) D ln 2x + Câu 13 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 2 1 A y = B y = − C y = − D y = 3 3 2 Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : x + y + z − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−1; −2; −3) C (2; 4; 6) D (−2; −4; −6) Câu 15 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: ln3 1 A y′ = B y′ = C y′ = D y′ = − xln3 x x xln3 Câu 16 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n4 = (1; 1; −1) C → n3 = (1; 1; 1) D → n1 = (−1; 1; 1) Câu 17 Năm 2022, hãng công nghệ có 30 triệu người dùng phần mềm họ Hãng đặt kế hoạch, năm tiếp theo, năm số lượng người dùng phần mềm tăng A Năm 2030 B Năm 2029 C Năm 2031 D Năm 2028 Câu 18 Thể tích khối trụ có chiều cao 3a bán kính đáy a A πa3 B 3πa3 C 9πa3 D 6πa3 Câu 19 Thể tích khối cầu có bán kính 2a 32 B πa C 32πa3 D 4πa3 A πa3 3 Câu 20 Xét a, b số thực dương thỏa mãn 4log2 a+2log4 b = Khẳng định sau đúng? A a4 b2 = B a4 b = C a4 b2 = D a4 b = Câu 21 Cho hàm số y = x4 − 3x2 + 2023 có đồ thị (C) Hệ số góc tiếp tuyến (C) điểm có hồnh độ −1 A 10 B −2 C −10 D Câu 22 Tập nghiệm bất phương trình log (2x + 1) ≥ log (x + 2) 4 1 B (−2; 1] C [1; +∞) D (− ; 1] A [− ; +∞] 2 ′ Câu 23 Cho hàm số y = f (x) có đạo hàm R f (x) = (x − 1)(x + 2) với x Số giá trị nguyên m cho hàm số y = f ( 2x3 + 3x2 − 12x − m ln √ d = 1200 Gọi Câu 27 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a 15 a a A B a 15 C D Câu 28 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A < m < B −2 < m < C m = D −2 ≤ m ≤ Câu 29 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể √ tích3 khối nón √ π.a π 2.a 4π 2.a3 2π.a3 A B C D 3 3 R Câu R30 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R D f (2x − 1)dx = 2F(2x − 1) + C C f (2x − 1)dx = F(2x − 1) + C Câu 31 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = 36 C yCD = 52 D yCD = −2 Câu 32 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π B V = C V = D V = A V = 3 5 √ Câu 33 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (1; +∞) B (0; 1) C (0; ) D ( ; +∞) 4 2z − i Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≤ B |A| < C |A| > D |A| ≥ z+1 Câu 35 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Câu 36 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 85 97 C T = 13 D T = B T = 13 A T = 3 Câu 37 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = + z + z2 Câu 38 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 √ Câu 39 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B |z| < C |z| > D ≤ |z| ≤ 2 2 Câu 40 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = D A = + i √ Câu 41 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm N Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 43 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (−∞; 4) B S = [6; +∞) C S = (−∞; 5] D S = (7; +∞) Câu 44 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 45 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ a3 A V = B V = 3a √ C V = a 3 2a3 D V = − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 46 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ −a = A

Ngày đăng: 23/06/2023, 16:06