1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Chuyên đề toán tổng hợp thpt (501)

52 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 52
Dung lượng 354,06 KB

Nội dung

CHUYÊN ĐỀ TOÁN TỔNG HỢP THPT Chuyên đề √ Câu Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 50 C |z| = 10 D |z| = A |z| = 33 Câu Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B 4π C 3π D π Câu Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 1)2 + (y − 4)2 = 125 B x = C (x − 5)2 + (y − 4)2 = 125 D (x + 1)2 + (y − 2)2 = 125 −2 − 3i Câu Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + đạo hàm R f (x) = (x − 1)(x + 2) với x Số giá trị nguyên m cho hàm số y = f ( 2x3 + 3x2 − 12x − m ) có 11 điểm cực trị A 23 B 24 C 27 D 26 Câu 26 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (−∞; 2] B (1; 2] C (1; 2) √ sin 2x Câu 27 Giá trị lớn hàm số y = ( π) R bằng? √ A B π C π R Câu 28 Tính nguyên hàm cos 3xdx 1 A sin 3x + C B − sin 3x + C C −3 sin 3x + C 3 D [2; +∞) D D sin 3x + C Câu 29 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(5; 9; 5) C C(3; 7; 4) D C(−3; 1; 1) Câu 30 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 B − C D A 6 Câu 31 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có√diện tích lớn bằng? √ √ 3 3 2 A (m ) B 3(m ) (m ) C (m ) D Câu 32 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD √ có chiều cao chiều√cao tứ diện √ tiếp √ π 2.a 2π 2.a2 π 3.a2 A B C D π 3.a2 3 2 Câu 33 Trong không gian Oxyz, cho mặt cầu (S ) : x + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = √ Giá trị lớn biểu thức Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ √ √ thức P = |z1 | + |z2 | √ B P = + C P = D P = 26 A P = 34 + + z + z2 Câu 36 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 5 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 z Câu 37 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 C D A B Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 1 A ; +∞ B 0; C ; D ; 4 4 Câu 39 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Câu 40 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = −2016 B P = 2016 C P = D max T = Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2

Ngày đăng: 23/06/2023, 15:55