Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 52 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
52
Dung lượng
328,42 KB
Nội dung
CHUYÊN ĐỀ TOÁN TỔNG HỢP THPT Chuyên đề √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 25π C 5π D Câu (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| + 2|z√− 1| √ √ √ A max T = 10 B max T = C max T = D max T = Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w √= x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k − 27 B w = + 27i hoặcw = − A w = 1√+ 27 hoặcw = √ √ √ 27i D w = − 27 − i hoặcw = − 27 + i C w = 27 − i hoặcw = 27 + i √ Câu (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A < |z| < B ≤ |z| ≤ C |z| > D |z| < 2 2 Câu Cho số phức z thoả mãn (1 + z) số thực Tập hợp điểm M biểu diễn số phức z A Parabol B Một đường thẳng C Đường tròn D Hai đường thẳng Câu Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A 10 B C D Câu Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 20 C r = D r = 22 Câu Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: ln3 A y′ = B y′ = C y′ = xln3 x x D y′ = − xln3 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 x−1 y−2 z+3 Câu 11 Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A P(1; 2; 3) B Q(1; 2; −3) C M(2; −1; −2) D N(2; 1; 2) Câu 10 Cho khối nón có đỉnh S , chiều cao thể tích Câu 12 Tập nghiệm bất phương trình x+1 < A (−∞; 1] B (1; +∞) C [1; +∞) D (−∞; 1) Câu 13 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 90◦ B 60◦ C 45◦ D 30◦ Câu 14 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 49 B 90 C 48 D 89 R dx = F(x) + C Khẳng định đúng? x 1 A F ′ (x) = − B F ′ (x) = lnx C F ′ (x) = x x Câu 15 Cho D F ′ (x) = x2 Câu 16 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x=5+t x = + 2t y = −1 + t y = + 3t y = −1 + 3t y = + 2t A B C D z = −1 + 3t z = −1 + t z = −1 + t z = + 3t Câu 17 Cho hàm số y = x4 − 3x2 + 2023 có đồ thị (C) Hệ số góc tiếp tuyến (C) điểm có hồnh độ −1 A −10 B −2 C 10 D n x Câu 18 Tìm hệ số x5 khai triển ( − ) , biết n số nguyên dương thỏa mãn 5Cnn−1 − Cn3 = x 35 35 35 35 A B − C D − 16 16 Câu 19 Cho hình chóp S ABCD có tất cạnh a Gọi φ góc hai mặt phẳng (S BD) (S CD) Mệnh đề sau đúng?√ √ √ √ C tan φ = B tan φ = D tan φ = A tan φ = 2 Câu 20 Tập xác định hàm số y = (x − 2) A R B R\{2} C [2; +∞) D (2; +∞) Câu 21 Tổng tất nghiệm phương trình log2 (9 − x ) = − x A −2 B C D √ Câu 22 Cho hình trụ có chiều cao a Trên đường trịn đáy thứ hình trụ lấy hai điểm A, B, đường tròn đáy thứ hai hình trụ lấy hai điểm C, D cho ABCD hình vng mặt phẳng(ABCD) tạo với đáy hình trụ góc 45◦ Thể tích√khối trụ cho √ √ √ 2πa3 2πa3 A · B 2πa3 C D 2πa3 Câu 23 Đặt log2 = a, log2 = b Khi log5 a b A a − b B C D ab b a Câu 24 Cho hàm số f (x) = ax3 − 4(a + 2)x + với a tham số Nếu max f (x) = f (−2) max f (x) (−∞;0] A −8 B C [0;3] D −9 ′ ′ ′ Câu cân A ,AB = a,AA′ = √ 25 Cho hình lăng trụ đứng ABC.A B C có đáy ABC tam giác vuông Gọi M trung điểm BC Khoảng cách hai đường thẳng AM B′C a 2√ √ √ 3a a 2a A B 2a C D 2 Câu 26 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = −2 C yCD = D yCD = 52 Câu 27 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 R Câu 28 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = 2F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C Câu 29 Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln( ) = B ln(ab2 ) = ln a + (ln b)2 b ln b C ln(ab2 ) = ln a + ln b D ln(ab) = ln a ln b Câu 30 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = Câu 31 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 a3 Câu 32 Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 450 B 300 C 1350 D 600 √ Câu 33 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = √ a Tính góc SC mặt phẳng (ABC) A 1200 B 600 C 300 D 450 Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm P C điểm R D điểm Q Câu 35 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = C P = −2016 D P = 2016 Câu 36 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i C |w|min = D |w|min = A |w|min = B |w|min = 2 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 9 1 A ; +∞ B ; C 0; D ; 4 4 2z − i Mệnh đề sau đúng? + iz A |A| > B |A| < C |A| ≥ D |A| ≤ z số thực Giá trị lớn Câu 39 Cho số phức z thỏa mãn z số thực ω = + z2 biểu thức √ M = |z + − i| √ A B C 2 D Câu 38 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu thức P = |z1 | + |z2 | √ √ √ √ B P = 34 + C P = D P = + A P = 26 Câu 41 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 Câu 42 Cho số phức z , thỏa mãn A |z| = C < |z| < 2 D + z + z2 số thực − z + z2 < |z| < 2 z+1 số ảo Tìm |z| ? z−1 B |z| = C |z| = D |z| = Câu 43 Đường cong hình bên đồ thị hàm số đây? A y = x4 − 2x2 + Câu 44 Biết R3 B y = x3 − 3x2 + f (x)dx = A R3 C y = −x4 + 2x2 + g(x)dx = Khi B R3 D y = −x3 + 3x2 + [ f (x) + g(x)]dx C −2 D C y′ = x.2023 x−1 D y′ = 2023 x ln 2023 Câu 45 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x ln x B y′ = 2023 x Câu 46 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−1; 0) B (1; +∞) C (0; 1) D (−∞; 1) √ Câu 47 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 A (1; 2) B (1; 2] C (−∞; 2] Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = |z|2 − D P = (|z| − 4)2 Câu 35 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = + i D A = Câu 36 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 37 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B −22016 C 21008 D 22016 Câu 38 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A Phần thực z số âm B |z| = C z số thực không dương D z số ảo Câu 39 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | √ Câu 40 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B a2 + b2 + c2 + ab + bc + ca C a2 + b2 + c2 − ab − bc − ca D √ 2 Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 =