Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 52 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
52
Dung lượng
345,39 KB
Nội dung
CHUYÊN ĐỀ TOÁN TỔNG HỢP THPT Chuyên đề Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w√ = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = −√ 27 − i hoặcw =√− 27 + i B w = + √27i hoặcw = − √ 27i D w = + 27 hoặcw = − 27 C w = 27 − i hoặcw = 27 + i Câu Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 5)2 + (y − 4)2 = 125 B (x − 1)2 + (y − 4)2 = 125 C x = D (x + 1)2 + (y − 2)2 = 125 Câu Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x − y + = C x − y + = D x + y − = −2 − 3i z + = Câu Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z − z =2? Câu Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường tròn B Một Elip C Một Parabol D Một đường thẳng Câu Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C 10 D 1+i Câu GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 25 15 25 B S = C S = D S = A S = 2 Câu Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A π B 3π C 2π D 4π √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = −2 − 3i Câu Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z +