Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng? A ln(ab2[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + ln b B ln(ab) = ln a ln b a ln a C ln(ab2 ) = ln a + (ln b)2 D ln( ) = b ln b √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C a D 2 Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (1; 2] C (−∞; 2] D (1; 2) Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C − D 6 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I √ trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ a a a 15 B C D a 15 A 3 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = R Câu R7 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(x) − + C Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(1; 1; 2) B I(0; 1; 2) C I(0; 1; −2) D I(0; −1; 2) Câu Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (−2; 0) B (0; 2) C (0; −2) D (2; 0) Câu 10 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ B 14 C 28 D 18 + A 11 + Câu 11 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A 17 B 15 C D Trang 1/5 Mã đề 001 Câu 12 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 D A B C ax + b Câu 13 Cho hàm số y = có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (0; −2) B (2; 0) C (−2; 0) D (0; 2) Câu 14 Tập nghiệm bất phương trình log(x − 2) > A (−∞; 3) B (12; +∞) C (3; +∞) D (2; 3) Câu 15 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 225 B 105 C 210 D 30 Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (−1; −2; −3) C (1; 2; 3) D (2; 4; 6) Câu 17 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = C A = 2ki D A = Câu 18 √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w = 6z − 25i √ Cho số phức z thỏa mãn A 29 B C D 13 Câu 19 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C 2017 + 2i + i có tổng phần thực phần ảo Câu 20 Số phức z = 2−i A -1 B C D D Câu 21 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z + z = 2bi B |z2 | = |z|2 C z − z = 2a D z · z = a2 − b2 Câu 22 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 i B (1 + i)2018 = 21009 i C (1 + i)2018 = −21009 D (1 + i)2018 = 21009 2(1 + 2i) Câu 23 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 25 1 Câu 24 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B −17 C 31 D 17 Câu 25 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = − 3i C w = + 7i R + lnx Câu 26 Nguyên hàm dx(x > 0) x A ln2 x + lnx + C B ln2 x + lnx + C C x + ln2 x + C R1 R R1 R1 Câu 27 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A 12 B C −3 D w = −7 − 7i D x + ln2 x + C D −8 Câu 28 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = sinx − cosx + C B F(x) = −sinx − cosx + C C F(x) = sinx + cosx + C D F(x) = −sinx + cosx + C Trang 2/5 Mã đề 001 Câu 29 Tìm nguyên hàm I = A I = xsinx + cosx + C x C I = x2 sin + C R xcosxdx x B I = x2 cos + C D I = xsinx − cosx + C Câu R30 Mệnh đề R sau sai? A k f (x) = k f (x) với số k với hàm số f (x) liên tục R R R R B ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R R R R C ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R R3 Câu 31 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A (0; ) B ( ; 1) C (−1; 0) D (1; 2) 2 Câu 32 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = 10 B I = C I = D I = Câu 33 Hàm số F(x) = sin(2023x) nguyên hàm hàm số cos(2023x) B f (x) = cos(2023x) A f (x) = − 2023 C f (x) = 2023cos(2023x) D f (x) = −2023cos(2023x) Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = C A = D A = −1 Câu 35 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D Câu 36 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 37 Cho a, b, c số thực z = − + 2 A a2 + b2 + c2 + ab + bc + ca B C a + b + c D a2 + b2 + c2 − ab − bc − ca z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B 2 C D Câu 39 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B −22016 C −21008 D 21008 √ 2 Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 3√ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 97 85 A T = B T = C T = 13 D T = 13 3 Trang 3/5 Mã đề 001 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = |z|2 − D P = (|z| − 2)2 Câu 43 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x > ay ⇔ x < y C Nếu a > a x = ay ⇔ x = y D Nếu a < a x > ay ⇔ x < y Câu 45 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A Câu 46 Biết B π R2 C D C ln D sin 2xdx = ea Khi giá trị a là: A − ln B x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = −1 Câu 47 Tìm tất giá trị tham số m để hàm số y = A Khơng có m B m = Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = + 2t x = −1 + 2t x = − 2t y = −2 + 3t y = −2 − 3t y = + 3t y = −2 + 3t A B C D z = − 5t z = − 5t z = −4 − 5t z = + 5t Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = √ Câu 50 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình với x ∈ (4; +∞) C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình vơ nghiệm Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001