Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiề[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 70, 128 triệu đồng B 3, triệu đồng C 20, 128 triệu đồng D 50, triệu đồng Câu Cho Z hai hàm y Z= A Nếu f (x)dx = Z Z B Nếu f (x)dx = Z Z C Nếu f (x)dx = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? g(x)dx f (x) , g(x), ∀x ∈ R g0 (x)dx f (x) = g(x), ∀x ∈ R g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu Nếu không sử dụng thêm điểm khác ngồi đỉnh hình lập phương chia hình lập phương thành A Một tứ diện bốn hình chóp tam giác B Năm hình chóp tam giác đều, khơng có tứ diện C Bốn tứ diện hình chóp tam giác D Năm tứ diện Câu [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 a , với a, b ∈ Z Giá trị a + b Câu [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = + b ln A B C D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D Câu [4-c] Xét số thực dương x, y thỏa mãn + = Khi đó, giá trị lớn biểu thức P = (2x2 + y)(2y2 + x) + 9xy 27 A 18 B C 12 D 27 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B C D −1 d = 90◦ , ABC d = 30◦ ; S BC tam giác cạnh a (S AB) ⊥ (ABC) Câu Cho hình chóp S ABC có BAC Thể tích√khối chóp S ABC √ √ √ a3 a3 a3 A B 2a C D 24 12 24 x2 − 12x + 35 Câu 10 Tính lim x→5 25 − 5x 2 A B −∞ C +∞ D − 5 x y Trang 1/4 Mã đề Câu 11 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B C a D A 2 Câu 12 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A C B a D a x+1 Câu 13 Tính lim x→+∞ 4x + 1 A B C D 2 Câu 14 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 Câu 15 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = − x2 y = x 11 A B C D 2 Câu 16 [2] Biết M(0; 2), N(2; −2) điểm cực trị đồ thị hàm số y = ax3 + bx2 + cx + d Tính giá trị hàm số x = −2 A y(−2) = B y(−2) = C y(−2) = 22 D y(−2) = −18 ! ! ! x 2016 Tính tổng T = f +f + ··· + f Câu 17 [3] Cho hàm số f (x) = x +2 2017 2017 2017 2016 D T = 2017 A T = 1008 B T = 2016 C T = 2017 Câu 18 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ơng ta muốn hồn nợ cho ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ tháng ông A trả hết nợ sau năm kể từ ngày vay Biết tháng ngân hàng tính lãi số dư nợ thực tế tháng Hỏi số tiền tháng ơng ta cần trả cho ngân hàng gần với số tiền ? A 3, 03 triệu đồng B 2, 22 triệu đồng C 2, 25 triệu đồng D 2, 20 triệu đồng Câu 19 Cho hàm số y = x3 − 3x2 + Tích giá trị cực đại giá trị cực tiểu A −6 B −3 C D Câu 20 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln 12 B ln C ln 10 D ln 14 √ Câu 21 phức z = ( + 3i) √ Xác định phần ảo số √ B −6 C −7 D A + + ··· + n Câu 22 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = Câu 23 [2-c] Cho a = log27 5, b = log8 7, c = log2 Khi log12 35 3b + 3ac 3b + 2ac 3b + 2ac 3b + 3ac A B C D c+2 c+2 c+3 c+1 Câu 24 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Trang 2/4 Mã đề Câu 25 Hàm số y = x3 − 3x2 + 3x − có cực trị? A B C D Câu 26 Khối đa diện loại {3; 3} có số mặt A B C D C y0 = x ln D y0 = Câu 27 [1] Đạo hàm hàm số y = x A y0 = x B y0 = x ln x ln x ln Câu 28 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (I) sai sai C Câu (II) sai D Câu (III) sai Câu 29 [4-1121h] Cho hình chóp S ABCD đáy ABCD hình vuông, biết AB = a, ∠S AD = 90◦ tam giác S AB tam giác Gọi Dt đường thẳng qua D song song với S C Gọi I giao điểm Dt mặt phẳng (S AB) Thiết diện hình chóp S ABCD với√mặt phẳng (AIC) có diện√tích √ a 11a2 a2 a2 A B C D 16 32 Câu 30 [1] Tập xác định hàm số y = x−1 A D = R \ {1} B D = R \ {0} C D = R D D = (0; +∞) √ √ Câu 31 Phần thực √ phần ảo số phức √ z = − − 3i √l √ A Phần thực 1√− 2, phần ảo −√ B Phần thực √2 − 1, phần ảo √ C Phần thực 2, phần ảo − D Phần thực − 1, phần ảo − Câu 32 Cho a số thực dương α, β số thực Mệnh đề sau sai? α aα A aαβ = (aα )β B β = a β C aα+β = aα aβ D aα bα = (ab)α a d = 120◦ Câu 33 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a B 4a C 3a D 2a A √ Câu 34 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 64 C 62 D Vô số Câu 35 [2-c] Giá trị nhỏ hàm số y = (x2 − 2)e2x đoạn [−1; 2] A −2e2 B −e2 C 2e2 D 2e4 x Câu 36 √ Tính diện tích hình phẳng giới hạn đường y = xe , y = 0, x = 3 A B C D 2 2 x − 5x + Câu 37 Tính giới hạn lim x→2 x−2 A −1 B C D Trang 3/4 Mã đề Câu 38 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) liên tục K B f (x) xác định K D f (x) có giá trị lớn K tan x + m nghịch biến khoảng Câu 39 [2D1-3] Tìm giá trị thực tham số m để hàm số y = m tan x + π 0; A (−∞; −1) ∪ (1; +∞) B (−∞; 0] ∪ (1; +∞) C [0; +∞) D (1; +∞) √ Câu 40 Cho chóp S ABCD có đáy ABCD hình vng cạnh a Biết S A ⊥ (ABCD) S A = a Thể tích √ khối chóp S ABCD √ √ a a3 a3 A B C D a3 12 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C A C A C 13 12 C 14 C 18 22 A 23 A 24 D 25 B D B 26 A 27 C 28 A 29 C 30 31 D 20 B 21 A D 32 33 A C B 34 36 B 37 A 39 B 16 B 17 A 35 C 10 A 11 A 19 B A 15 C C B C 38 D 40 B