Veterinary Herbal Medicine by Susan G. Wynn DVM, Barbara Fougere

695 1 0
Veterinary Herbal Medicine by Susan G. Wynn DVM, Barbara Fougere

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Khi tình trạng nhiễm trùng kháng kháng sinh gia tăng, các biện pháp điều trị bằng thảo dược cung cấp một chất thay thế mạnh mẽ tự nhiên cho thuốc kháng sinh thông thường. Chuyên gia nổi tiếng về thảo dược, Stephen Harrod Buhner, nghiên cứu sâu về nguồn gốc của tình trạng kháng kháng sinh đồng thời chứng minh lợi ích của các liệu pháp thảo dược. Ngoài ra, ông còn kiểm tra kỹ lưỡng 30 loài thực vật vô giá, nêu rõ liều lượng thích hợp, phản ứng bất lợi có thể xảy ra và chống chỉ định của chúng.

11830 Westline Industrial Drive St Louis, Missouri 63146 VETERINARY HERBAL MEDICINE ISBN-13: 978-0323-02998-8 ISBN-10: 0-323-02998-1 Copyright © 2007 by Mosby, Inc., an affiliate of Elsevier Inc All rights reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher Permissions may be sought directly from Elsevier’s Health Sciences Rights Department in Philadelphia, PA, USA: phone: (+1) 215 239 3804, fax: (+1) 215 239 3805, e-mail: healthpermissions@elsevier.com You may also complete your request on-line via the Elsevier homepage (http://www.elsevier.com), by selecting “Customer Support” and then “Obtaining Permissions” Notice Knowledge and best practice in this field are constantly changing As new research and experience broaden our knowledge, changes in practice, treatment, and drug therapy may become necessary or appropriate Readers are advised to check the most current information provided (i) on procedures featured or (ii) by the manufacturer of each product to be administered, to verify the recommended dose or formula, the method and duration of administration, and contraindications It is the responsibility of practitioners, relying on their own experience and knowledge of the patient, to make diagnoses, to determine dosages and the best treatment for each individual patient, and to take all appropriate safety precautions To the fullest extent of the law, neither the Publisher nor the Authors assumes any liability for any injury and/or damage to persons or property arising out of or related to any use of the material contained in this book The Publisher Library of Congress Cataloging-in-Publication Data Veterinary herbal medicine / [edited by] Susan G Wynn, Barbara J Fougère p ; cm Includes bibliographical references and index ISBN-13: 978-0-323-02998-8 ISBN-10: 0-323-02998-1 Alternative veterinary medicine Herbs—Therapeutic use I Wynn, Susan G II Fougère, Barbara [DNLM: Phytotherapy—veterinary Veterinary Medicine–methods Medicine, Herbal–methods SF 745.5 V586 2007] SF745.5.V4844 2007 636.089′5321—dc22 2006047201 Publishing Director: Linda Duncan Publisher: Penny Rudolph Developmental Editor: Shelly Stringer Publishing Services Manager: Pat Joiner Senior Project Manager: Karen M Rehwinkel Senior Designer: Jyotika Shroff Working together to grow libraries in developing countries www.elsevier.com | www.bookaid.org | www.sabre.org Printed in China Last digit is the print number: Contributors James Martin Affolter, PhD (Botany) Professor University of Georgia Department of Horticulture; Director of Research State Botanical Garden of Georgia University of Georgia Athens, Georgia Chapter 17: Conserving Medicinal Plant Biodiversity Kerry Martin Bone, BSc (Hons); Dip Phyt (Diploma in Phytotherapy) Adjunct Associate Professor School of Health University of New England Armidale, New South Wales, Australia; Director of Research Research & Development MediHerb Pty Ltd Warwick, Queensland, Australia Chapter 7: Evaluating, Designing, and Accessing Herbal Medicine Research Cindy Engel, PhD, MRSS Lecturer, Open University Clover Forge Farm Suffolk, United Kingdom Chapter 2: Zoopharmacognosy Terrence S Fox, BS (Hon), MS, PhD Buck Mountain Botanicals Miles City, Montana Chapter 16: Commercial Production of Organic Herbs for Veterinary Medicine Joyce C Harman, DVM, MRCVS Harmany Equine Clinic, Ltd Washington, Virginia Chapter 21: Herbal Medicine in Equine Practice Hubert J Karreman, VMD Penn Dutch Cow Care Quarryville, Pennsylvania Chapter 22: Phytotherapy for Dairy Cows William Bookout, BS, MBA President, Genesis Limited; President, National Animal Supplement Council Valley Center, California Chapter 8: Regulation and Quality Control Linda B Khachatoorian, RVT Product Manager Genesis Limited Valley Center, California Chapter 8: Regulation and Quality Control Marina Martin Curran, BSc (Hons), MSc School of GeoSciences University of Edinburgh United Kingdom Chapter 3: Ethnoveterinary Medicine: Potential Solutions for Large-Scale Problems? Tonya E Khan, DVM, BSc Veterinarian Mosquito Creek Veterinary Hospital North Vancouver, British Columbia, Canada Chapter 3: Ethnoveterinary Medicine: Potential Solutions for Large-Scale Problems? v vi CONTRIBUTORS Robyn Klein, RH (AHG), MS, Medical Botanist Adjunct Professor Department of Plant Sciences Montana State University Bozeman, Montana Chapter 10: Medical Botany Cheryl Lans, MSc, PhD Postdoctoral Scholar Department of Sociology University of Victoria Victoria, British Columbia, Canada Chapter 3: Ethnoveterinary Medicine: Potential Solutions for Large-Scale Problems? Steven Paul Marsden, DVM, ND, MSOM, LAc, Dipl Chinese Herbology, RH(AHG) Instructor International Veterinary Acupuncture Society Fort Collins, Colorado; Member, Board of Directors National College of Naturopathic Medicine Portland, Oregon; Co-founder, Edmonton Holistic Veterinary Clinic Edmonton, Alberta, Canada; The Natural Path Clinic Edmonton, Alberta, Canada Chapter 5: Overview of Traditional Chinese Medicine: The Cooking Pot Analogy Chapter 13: Herbal Energetics: A Key to Efficacy in Herbal Medicine Constance M McCorkle, PhD Senior Research Scientist and President CMC Consulting Falls Church, Virginia; Graduate Faculty Member University of Fairfax Vienna, Virginia Chapter 3: Ethnoveterinary Medicine: Potential Solutions for Large-Scale Problems? Andrew Pengelly, DBM, ND, BA, FNHAA Program Convener and Lecturer in Herbal Therapies School of Applied Sciences University of Newcastle New South Wales, Australia Chapter 17: Conserving Medicinal Plant Biodiversity Robert H Poppenga, DVM, PhD, Diplomate, American Board of Veterinary Toxicology Professor of Clinical and Diagnostic Veterinary Toxicology California Animal Health and Food Safety Laboratory System University of California School of Veterinary Medicine Davis, California Chapter 12: Herbal Medicine: Potential for Intoxication and Interactions With Conventional Drugs David W Ramey, DVM Ramey Equine Calabasas, California; Adjunct Faculty College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins, Colorado Chapter 9: A Skeptical View of Herbal Medicine Robert J Silver, DVM, MS Boulder’s Natural Animal: An Integrative Wellness Center Boulder, Colorado Chapter 6: Ayurvedic Veterinary Medicine: Principles and Practices Eric Yarnell, ND, RH(AHG) President, Botanical Medicine Academy Seattle, Washington; Adjunct Faculty Department of Botanical Medicine Bastyr University; Adjunct Faculty Herbal Healing Program Tai Sofia Institute; Visiting Professor Pochon CHA University Seoul, Korea; Chief Financial Officer, Healing Mountain Publishing, Inc.; Vice President, Heron Botanicals, Inc Seattle, Washington Chapter 11: Plant Chemistry in Veterinary Medicine: Medicinal Constituents and Their Mechanisms of Action Ellen Zimmerman, MA Austin School of Herbal Studies Austin, Texas Chapter 15: Designing the Medicinal Herb Garden Preface onsumers of medicine and veterinary medicine have shown that they desire a variety of medical approaches Herbal medicine just can’t seem to die, and has persisted no thanks to us veterinarians—our clients and nonveterinary herbalists have kept it alive Skeptics have mourned the loss of medical independence, and have argued that medical research and practice should not be beholden to public opinion In fact, the last hundred years of medical trajectory is the result of the Flexner report, which aimed to shut down sectarian medicine Flexner’s sponsor, the Carnegie Foundation, believed that medical education should not be independent and commercialized, but that it in fact should answer to public and charitable interests (Hiatt, 1999) People want herbal medicine This is our attempt to help veterinarians explore and begin to offer it C We recognize that challenges still exist It may be some time until we clearly understand how herbs and drugs interact Standardization is a contentious issue, recommended by researchers and resisted by herbalists In our view, herbal medicine is unique among medical specialties in that we are guided by the past, whereas most of medicine is inspired by new and untested remedies Still, we support research that clarifies these issues, and our hope is that researchers in this field will recognize the expertise and experience of herbalists already active in clinical investigations of their tools With this book, we hope that we can contribute to the re-emergence of the art of veterinary herbal medicine vii Acknowledgments his book is the result of collaboration between extraordinary experts in a variety of fields By bringing them together, we hope we have presented a new picture of herbal medicine to the veterinary profession We could not have done it without our authors, and we have also relied upon reviewers to survey the information for errors We thank Joni Freshman, Patricia Kyritsi Howell, Beth Lambert, Sherry Sanderson, Roy Upton, David Winston, and Eric Yarnell for previewing some of the chapters for accuracy Any errors that remain belong to us and should not reflect on their work Of course, we stand on the shoulders of giants, and the resources of herbalists who come before us have been invaluable We would like to especially thank Henriette Kress, Michael Moore, Paul Bergner, David Winston, Michael Tierra, James Duke, Daniel Moerman, Kerry Bone, Simon Mills, Berris Burgoyne, and many more who have shared their knowledge in books and on their websites, as well as the authors of the many ethnomedical, scientific herbals, and antiquarian veterinary texts, too many to be named, in our libraries T We also acknowledge the tireless efforts of our editors, in particular Shelly Stringer and Karen Rehwinkel Many thanks to our family and friends, who waited patiently for us to finish so that we could regain our free time Susan Wynn would particularly like to thank her parents, Jack and Linda Wynn, her students, her coworkers at Bell’s Ferry Veterinary Hospital, and finally, Barbara Fougère, for their heartening reassurances about this project A special thanks from Barbara Fougère to Lyndy Scott and Karl Walls for your support and encouragement And to Susan Wynn, its been a real pleasure—a challenging, stimulating, and very exciting journey working with you Thank you Together we would also like to especially acknowledge the many animals who have given their lives for the sake of scientific research If, in the evidence-based medicine scheme, their sacrifices are meaningless to our patients, we are the poorer for it ix Introduction: Why Use Herbs? Susan G Wynn and Barbara J Fougère CHAPTER “Plants are nature’s alchemists, expert at transforming water, soil, and sunlight into an array of precious substances, many of them beyond the ability of human beings to conceive, much less manufacture While we were nailing down consciousness and learning to walk on two feet, they were, by the same process of natural selection, inventing photosynthesis (the astonishing trick of converting sunlight into food) and perfecting organic chemistry As it turns out, many of the plants’ discoveries in chemistry and physics have served us well From plants come chemical compounds that nourish and heal and poison and delight the senses, others that rouse and put to sleep and intoxicate, and a few with the astounding power to alter consciousness—even to plant dreams in the brains of awake humans.” Botany of Desire, Michael Pollan H erbal medicine represents a synthesis of many fields—botany, history, ethnomedicine, and pharmacology Embarking on the study of this field means that veterinarians will be required to reframe the way they think about medicine Many challenges await us We are asked to consider plants we learned in toxicology as useful medicines We are told, in the age of evidence-based medicine, that old authorities (some who lived as long as 2000 years ago) still have something to teach us Our knowledge about these medicines comes from plant scientists, food scientists, pharmacologists, lay herbalists, and farmers—and we are asked to respect them as equal partners in herbal education and discovery Even as we become comfortable and familiar with these plants, we are told that we won’t be able to use them unless we become active in conservation efforts Herbal medicine asks a lot but gives the practitioner more in return Why use an herb when we have available to us established, effective treatments for so many medical conditions? Most herbalists would answer this way: When conventional treatments are both safe and effective, they should be used Unfortunately, that isn’t the case for many serious chronic medical conditions—chronicity is virtually defined by the fact that medicine isn’t working Herbs represent an additional tool for the toolbox For some, the fact that animals have been thought to treat themselves using herbs is reason enough to try them For some herbalists, herbs also represent a different approach to the practice of medicine, that is, using the complex formulas “developed” by plants over millennia in relationship with the rest of the beings on the planet These combinations of chemicals nourish, heal, and kill, but by using rational combinations in the practice of medicine, herbalists believe they attain longer lasting, more profound improvements (Box 1-1) HERBS ARE NOT SIMPLY “UNREFINED DRUGS” Complex Drugs With Complex Actions Plants may contain many dozens of chemical constituents Some of these have pharmacologically unique and powerful activity and have been tapped by the drug industry to develop new pharmaceuticals However, the other ingredients in plants may have important activity as well Consider, for example, the vitamins, minerals, flavonoids, carotenoids, sugars, and amino acids contained in a plant—do these assist effector cells in mounting the physiologic response initiated by the “drug”? And constituents with lesser pharmaceutical activity than the one “recognized” active constituent play any role? These complex drugs offer the sick patient a greater range of effects Because there are many conditions for which the etiopathogenesis is unknown, providing the patient with a choice of biochemical solutions makes sense Take, for example, Saint John’s Wort for depression, as compared with paroxetine or sertraline The “active constituents” of Saint John’s Wort and their studied actions include the following (Butterweck, 2003; Simmen, 2001): • Amentoflavone: inhibits binding at serotonin (5HT)(1D), 5-HT(2C), D(3) dopamine, delta opiate, and benzodiazepine receptors • I3, II8-biapigenin: inhibits binding at estrogen–alpha receptor, benzodiazepine receptors • Quercitrin, isoquercitrin, hyperoside, rutin, quercetin, amentoflavone, and kaempferol inhibit dopamine beta-hydroxylase • Hypericin: binds D(3) and D(4) dopamine receptors, beta-adrenergic receptors, human corticotrophinreleasing factor (CRF1) receptor, sigma receptors, and CHAPTER • Introduction: Why Use Herbs? NPY Y1 receptors; inhibits activation of N-methyl-Daspartate (NMDA) receptors • Hyperforin: binds D(1) and, to a lesser extent, other dopamine receptors, 5-HT, opiate, benzodiazepine, and beta-adrenergic receptors; inhibits Na-dependent catecholamine uptake at nerve endings; inhibits high-affinity choline uptake; inhibits neuronal uptake of serotonin, norepinephrine, dopamine, gammaaminobutyric acid (GABA), and L-glutamate through mechanisms different from synthetic selective serotonin reuptake inhibitors (SSRIs) (more reminiscent of tricyclic antidepressants [TCAs]); affects cell membrane fluidity; and enhances glutamate, aspartate, and GABA release • Hyperin: decreases malondialdehyde and nitric oxide levels in injury model; decreases Ca influx in brain cells • Pseudohypericin: inhibits activation of NMDA receptors BOX 1-1 Reasons Whole Herbs Are Preferred to Isolated Active Constituents • The whole herb or whole extract is already understood from history and clinical trials • The herb’s constituents have complex actions that may benefit the patient through additive, antagonistic, or synergistic effects • Some constituents may not be stable when isolated • Most active constituents may be unknown Receptor Activity: Saint John’s Wort Constituents 5HT Amentoflavone 12, II8-Biapigenin Hypericin Hyperforin Pseudohypericin 5HT (1D) ✓ 5HT (2C) ✓ D(1) Dopamine ✓ ✓ D(3) Dopamine ✓ D(4) Dopamine ✓ ✓ ✓ ✓ Delta Opiate Benzodiazepine ✓ ✓ ✓ ✓ Estrogen Alpha Betaadrenergic Sigma NPY Y1 NMDA CRF1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 5-HT, serotonin; NMDA, N-methyl-D-aspartate; CRF, corticotrophin-releasing factor Uptake Effects: Saint John’s Wort Constituents Nadependent Catecholamine Uptake Hyperforin ✓ Inhibit Highaffinity Choline Uptake ✓ Inhibit Lowaffinity Choline Uptake ✗ Serotonin Norepinephrine Dopamine GABA L-glutamate ✓ ✓ ✓ ✓ ✓ GABA, gamma-aminobutyric acid Other Effects: Saint John’s Wort Constituents Dopamine Betahydroxylase Quercitrin Isoquercitrin Rutin Quercetin Kaempferol Hyperoside Hyperforin Hyperin ✓ ✓ ✓ ✓ ✓ ✓ GABA, gamma-aminobutyric acid Change Membrane Fluidity GABA Release Aspartate Release Glutamate Release ✓ ✓ ✓ ✓ Malondialdehyde Levels Nitric Oxide Levels Decrease Neuronal Calcium Influx ✓ ✓ ✓ Introduction: Why Use Herbs? • CHAPTER Paroxetine is a pure SSRI; sertraline is an SSRI that binds beta-adrenergic receptors These are much more defined actions, as would be the action of many of the single constituents of Saint John’s Wort Treatment of patients with depression may require trial and error drug treatment, and the first drug prescribed is often ineffective Offering a plant drug with multiple actions gives the body a multitude of possible solutions at one time As a whole, Saint John’s Wort cannot be compared with any known drug When asked which is the single active ingredient of any herb, the drumbeat of the herbalist will always be: The Plant Is the Active Constituent! Synergy The chemical compounds in plant medicines may have additive, antagonistic, or synergistic effects For instance, foxglove is less toxic than its active ingredient digoxin because the digoxin is diluted out by other plant constituents, some of which may antagonize its action Additive effects are fairly easily quantified when the individual chemicals are well defined Synergistic effects are more difficult to quantify and are the subject of some investigation into the effects of plants Synergy between plant components may take pharmacodynamic forms or pharmacokinetic forms In pharmacokinetic synergy, one component may enhance intestinal absorption or utilization of another component Pharmacodynamic synergy occurs when two compounds interact with a single target or system Not all of these interactions fit the strictest physicochemical definition of synergy, and Williamson (2000) has suggested that these should be called polyvalent actions of plant medicines Barberry (Berberis aquifolium) contains berberine, an alkaloid with documented antigiardial, antiviral, and antifungal properties It is also an anti-inflammatory and has been shown to modulate prostaglandin levels in renal and cardiovascular disease Herbalists have long used berberine-containing plants (which also include Goldthread [Coptis spp] and Goldenseal) for treating patients with infection Use of the single drug berberine may lead to antibacterial resistance, although herbalists appear to use the whole plants repeatedly with no ill effects One group asked the question, “Why don’t bacteria easily develop resistance to berberine-containing plants?” Stermitz et al screened barberry plants for known multiple drug resistance inhibitors and found one— 5-methoxyhydnocarpin (Stermitz, 2000) A seemingly unimportant constituent contained in barberry may synergistically enhance the effectiveness of the berberine it contains Other examples of purported synergism may be seen in plant medicines Wormwood (Artemisia annua) is the source of the antimalarial compound, artemisinin The flavonoids contained in the plant apparently enhance the antimalarial activity of this compound in vitro (Phillipson, 1999) Similar types of activity have been determined for compounds found in kava, valerian, dragon’s blood (Croton draconoides), and licorice (Williamson, 2000) HERBAL PRESCRIPTIONS ARE INDIVIDUALIZED FOR EACH PATIENT Herbal Simples and Specifics In earlier times, a single herb that was appropriate for a particular condition was called a simple For example, use of cranberry for a urinary tract infection is a simple prescription Simple prescriptions allow new practitioners to learn about individual herbs thoroughly, one at a time, before taking the next step to formula design Some American eclectic practitioners (specifically, John M Scudder, MD) taught that herbs have specific indications for use According to this system of specific diagnosis and specific treatment, single herbs were recommended for a particular condition or diagnosis with associated symptoms For example, quite a few herbs are appropriate for diarrhea (as there are drugs for diarrhea) Some herbs are considered astringents; others are demulcents Some come with the accompanying features of soothing the respiratory tract or the skin as part of their therapeutic spectrum A specific is chosen with the patient’s overall health or disease picture in mind, when the herbalist possesses this depth of knowledge Specific prescriptions reflect the growing popularity of homeopathy during the 19th century, and the herb symptom picture descriptions in John Scudder’s specific medication are superficially similar to homeopathic symptom pictures (Table 1-1) Herbal Formulas In herbal medicine, polypharmacy is de rigueur; herbalists try to anticipate and treat associated problems and possible adverse effects of treatment in a proactive way An herbal formula may provide the following for any individual patient: One or more herbs that provide multiple mechanisms by which the major sign or complaint can be resolved If these herbs not fit the specific picture of the patient, the formula may provide herbs to reduce adverse effects or support other signs Herbs that support other signs or systems in need Formula design can be complicated or simple, and more information on this process can be found in Chapter 19, Approaches in Veterinary Herbal Medicine Prescribing HERBS OFFER A DIFFERENT APPROACH TO CHRONIC DISEASE The diseases that dominate human medicine are different today from the ones described 100 or 1000 years ago Animal health and disease have changed in sometimes similar ways; we currently have good treatment options for patients with bacterial and parasitic diseases, for instance, but we face challenges with cancer and allergic and degenerative diseases For this, if for no other reason, the traditions of herbal medicine deserve another look Conventional pharmacology currently has no place for considering alteratives, tonics, and adaptogens—these represent just some of the activities that are possibly CHAPTER • Introduction: Why Use Herbs? TABLE 1-1 Specific Medication: Comparison of Cough Remedies Herb Licorice Action Against Cough Demulcent, antispasmodic, anti-inflammatory Elecampane Slippery elm Lobelia Aromatic stimulant and tonic Demulcent Nauseant, emetic, expectorant, relaxant, antispasmodic, diaphoretic, sialagogue, sedative; secondarily, occasionally cathartic, diuretic, and astringent Tonic, carminative, emmenagogue, and antispasmodic Thyme Other Indications for the Herb Urinary tract inflammation, intestinal spasm Digestive weakness Chronic digestive disorders Formerly, for spasmodic problems from muscular tetany to seizures Flatulence, colic, headache unique to plant medicines Adaptogens, for instance, increase nonspecific responses to stress, usually without adverse effects and are often taken for long periods Alteratives were formerly considered (among other things) blood cleansers, but today, we view alteratives as herbs that restore or correct absorptive and excretory functions The traditions of Traditional Chinese Medicine, Ayurveda, and other ethnomedical systems are even more unfamiliar for modern veterinarians trained in the scientific tradition This is no excuse, however, for ignoring the possibilities when conventional medicine fails to serve our patients These traditions offer hundreds to thousands of years of empirical experience, and the alternative perspective may open new avenues for scientific investigation Veterinary herbalists not graduate from these traditions—they learn from them SUMMARY Herbal medicine is used in ways that differ from the ways conventional pharmacologic drugs are used Because herbs have nutritional elements, and because pharmaceutical elements interact with one another polyvalently, the clinical effects may have greater depth and breadth than those seen in drug therapy Patient prescriptions are based on both the pharmacology AND the traditional indications for the herbs For many of the reasons cited here, and for other reasons, veterinarians are using herbal medicine again A recent survey of 2675 veterinarians in Austria, Germany, and Switzerland suggested that approximately three quarters of veterinarians in those countries are using herbal Other Characteristics of the Herb Suppresses cortisol breakdown; not use in patients with hyperadrenocorticism Very safe herb Very safe herb Very strong herb—effective at low doses Safe herb in culinary doses medicine, especially for chronic diseases and as adjunct therapy (Hahn, 2005) Most veterinarians view their animal patients as kin, and veterinary herbalists may expand the family even further Native Americans who depended on their domesticated animals (such as the Plains tribes and their horses) had greater knowledge of plant medicine than did other tribes (Stowe, 1976) Herbalists await scientific investigation of plant medicines but also learn from the plants themselves, acknowledging the ancient and evolving relationship between plants and mammals References Butterweck V Mechanism of action of St John’s wort in depression: what is known? CNS Drugs 2003;17:539-562 Hahn I, Zitterl-Eglseer K, Franz CH Phytomedizin bei hund und katze: internetumfrage bei Tierärzten und Tierärztinnen in Österreich, Deutschland und der Schweiz Schweiz Arch Tierheilk 2005;147:135-141 Phillipson JD New drugs from plants—it could be yew Phytother Res 1999;13:1-7 Simmen U, Higelin J, Berger-Buter K, et al Neurochemical studies with St John’s wort in vitro Pharmacopsychiatry 2001; 34(suppl 1):S137-S142 Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5’-methoxyhydnocarpin, a multidrug pump inhibitor Proc Natl Acad Sci U S A 2000 Feb 15;97(4):1433-1437 Stowe CM History of veterinary pharmacotherapeutics in the United States JAVMA 1976;169:83-89 Williamson EM Chapter In: Ernst E, ed Herbal Medicine: A Concise Overview for Professionals Oxford: ButterworthHeinemann; 2000 Zoopharmacognosy Cindy Engel CHAPTER F olklore asserts that animals instinctively know how to medicate their ills from the herbs they find growing wild Traditional herbalist Juliette de Bairacli Levy writes that sick animals partake “only of water and the medicinal herbs which inherited intelligence teaches it instinctively to seek.” Around the world, traditional herbalists use observations of sick wild animals to find new medicines Benito Reyes of Venezuela, for example, claims to have discovered the antiparasitic benefits of the highly astringent seeds of the Cabalonga tree ( Nectandra pinchurim) by observing emaciated animals scraping and chewing the fallen seeds As a result of such folklore, there is a common lay assumption that animals unerringly know which herbs to use for which ills However, this overly romantic view of the wisdom of an all-knowing animal is clearly incorrect Both wild and domestic animals are known to poison themselves by feeding on toxic substances, repeatedly return to feed on toxic but intoxicating plants, and sometimes quite clearly fail to successfully medicate their ills Such failures could suggest that animals are in fact incapable of helping themselves when ill and have in the past kept the topic of animal self-medication off the research agenda However, a growing body of scientific evidence shows that animals—not only mammals but birds and insects— are self-medicating a variety of physical and psychological ills Such behavioral strategies though, like all strategies, are fallible; however, it is the limits of efficacy that are of great interest to those working in the field of animal health Because self-medication strategies have the potential to greatly enhance the health of animals in our care, we would be wise to explore them more closely SELF-REGULATION Living systems are inherently self-regulatory Behavior is one means by which animals regulate their physiologic and psychological states For example, overheated animals move into the shade, where it is cooler; dehydrated, they search for water; anxious, they seek safety However, behavioral self-regulation is far more refined than this Deprived of only one amino acid, rats increase their consumption of novel foods until they find a diet that is rich in that missing amino acid Furthermore, they learn an aversion to foodstuffs that are deficient in only one amino acid (Rogers, 1996; Fuerte, 2000) Lambs monitor the carbohydrate and protein content of their diet and adjust their feeding accordingly If deprived of phosphorus, sheep not only identify a phosphorus-rich diet but also learn a preference for the foods that correct deficiency malaise (Villalba, 1999; Provenza, 1995) Reviewers conclude that such nutritional wisdom is achieved via a combination of postingestive hedonic feedback and individual learning They propose that “behavior is a function of its consequences” (Provenza, 1995, 1998) This is true of health maintenance in general, that is, the individual assesses via hedonic feedback—“Do I feel better or worse after doing that?” The cost to an individual of not maintaining health can be high Consequently, natural selection has honed a variety of behavioral health maintenance strategies reviewed most recently by Hart (1990, 1994) and Huffman (1997a) As Hart points out, behavior is often the first line of defense against attack by pathogens and parasites As a result, animals use behavioral strategies for avoiding, preventing, and therapeutically addressing threats to survival NATURE’S LARDER—POWERFUL PHARMACOPOEIA Animals must obtain the nutrients and energy they need from a larder that is constantly changing in composition and is often well defended Moreover, nutrients and energy often come packaged with varying quantities of nonnutrients, many of which are bioactive This bioactivity is not a fixed phenomenon either These nonnutrients can be toxic, intoxicating, or medicinal, depending on dose, frequency of consumption, and combination with other foodstuffs, as well as on the changing internal conditions of individual animals 700 INDEX 11β-Hydrosteroid dehydrogenase, 321 Hygrophilia auriculata, 196t Hyoscyamine, 175f Hyoscyamus niger, 189t, 387 Hyperactivity, 360 Hyperadrenocorticism, 324, 511 Hyperforin, 2, 188, 643f Hypericin description of, 1-2, 91 drug interactions with, 129 Hypericum perforatum active constituents of, 1-3, 2t, 188 analgesic uses of, 345, 355 anticonvulsant uses of, 355 antidepressant uses of, 354 anxiolytic uses of, 350 cognitive enhancement uses of, 356 contraindications, 185 description of, 642-644 drug interactions, 204t epilepsy treated with, 355 kidney cancer treated with, 302 safety of, 188 stress treated with, 354 wound healing benefits of, 388 Hyperin, Hyperlipidemia, 295 Hypertension, 313 Hyperthyroidism description of, 324 drugs for, 195t Hypertrophic cardiomyopathy, 313314 Hypnotics, 194t, 352 Hypoadrenocorticism, 323-324 Hypocholesterolemia, 332 Hypocotyl, 156 Hypocotyle, 145 Hypolipidemia, 332 Hypotensives, 311-312 Hypothalamic-pituitary-axis, 353 Hypothyroidism, 71, 195t, 324-325 Hyssop drug interactions with, 191t respiratory uses of, 373 I I3, Iboga, 201t Iboza multiflora, 24t Iceland moss drug interactions with, 201t respiratory uses of, 372 II8-biapigenin, Ilex paraguariensis, 202t “Illness response behavior,” 11 Immune deficiency, 295-296 Immune function, 70, 73 Immune response, 93-94 Immune system description of, 238t herbs that affect, 295, 307 Immune-mediated hemolytic anemia, 70 Immune-modulating herbs autoimmune diseases treated with, 320b cancer treated with, 297-299 dermatologic uses of, 318 hematologic disorders treated with, 292-293 Immunostimulants, 195t Immunosuppressives, 195t, 295-296 Impatiens balsamifera, 387 Incontinence, 381 Indian bedellium Guggul See Commiphora spp Indian coral powder, 78t Indian gooseberry See Emblica officinalis Indian long pepper, 305 Indian madder See Rubia cordifolia Indian olibanum tree See Boswellia Indian pennywort See Centella asiatica Indian pipe, 345 Indian snakeroot, 201t Indigenous Knowledge and Development Monitor, 19 Indirect risks, 130 Indole alkaloids, 175b Indole-3-carbinol, 165, 165f Infection, 296 Infertility, 367 Inflammation, 447, 449-450 Inflammatory bowel disease aloe for, 466 Ayurvedic treatments for, 71 causes of, 340 herbal treatments for, 339-340 Inflorescences, 143 Infused oils, 227 Infusions, 226-227, 227t Insects parasite control in, 9-10 plants and, relationship between, 150 Insomnia, 360 Institute for Nutraceutical Advancement, 109 Institute of Medicine, 129 Interleukin-2, 148 Intermediate filaments, 144f International Code of Botanical Nomenclature, 141 Internet databases, 94b herbal information resources, 206 research on, 94-95 Interstitial cystitis, 381 Intervertebral disk disease, 360 Intestinal ulcers, 343 Intoxication description of, 184 diagnosis of, 205 information sources regarding, 206 treatment of, 206 Inula (Inula spp.) antihyperglycemic effects of, 322 I glomerata, 24t I helenium, 328, 543-544 I racemosa, 322 Ipomoea purga, 189t Iridoid glycosides, 169t, 170 Iris versicolor dermatologic uses of, 316 description of, 345 Irish moss, 372 Irritable bowel syndrome, 340 Iscador, 305 Isoflavones description of, 167 herbs with high levels of, 166b Isoprene, 168 Isoquinoline alkaloids, 175b Isothiocyanate aglycones, 165 Ispaghula, 334 Ivy drug interactions with, 201t ectoparasiticidal uses of, 383 expectorant uses of, 371 J Jamaican dogwood analgesic uses of, 345, 355 sedative effects of, 349, 352 spasmolytic uses of, 353 Japan, 35-36, 100 Jarisch-Herxheimer reaction, 280b Java tea, 201t Jewelweed, 239, 387 Jimsonweed, 201t, 387 Jing-Luo Qi, 54t Joe pye weed, 574 Josselyn, John, 42 Journal of Ethnopharmacology, 94 Juglans nigra anthelminthic uses of, 328 description of, 488-490 dosage of, 489 drug interactions, 197t drug interactions with, 197t heartworms treated with, 313 Jujuboside, 671f Juniper (Juniperus spp.) description of, 215, 584-586 diuretic effects of, 376-377 dosage of, 585 drug interactions with, 201t INDEX K Kalopanax pictus, 197t Kapha, 62t, 63, 64b, 67b, 278 Karoo Garden, 258 Kava adverse effects of, 587 anesthetic uses of, 352 anticonvulsant uses of, 355 anti-inflammatory uses of, 377 antispasmodic uses of, 353 anxiolytic uses of, 351 characteristics of, 267 description of, 187, 586-588 dosage of, 587-588 drug interactions, 201t kidney cancer treated with, 302 nervine uses of, 357-358 sedative uses of, 352 Kava lactones, 91 Kavain, 586f Kawaism, 187 Kelp, 201t, 368 Khat, 187, 201t Khaya senegalensis, 24t Kidney(s) cancer of, 301-302 diseases of, 381 herbs that affect, 332-333 in traditional Chinese Medicine, 51-52 Kidney tonics, 378-379 Kigelia spp., 24t King Ashoka, 33, 60 Kneipp, Sebastian, 43 Korean ginseng cognitive enhancement uses of, 356 description of, 267-268 Krameria (Krameria triandra), 384 Kudzu, 201t Kuth, 268 L Labeling, 131, 456 Labrador tea, 383 Lactuca spp L sativa, 449 L virosa, 352 Lactucin, 170f Lady’s slipper, 269t Lagenaria breviflora, 24t Lagerstroemia, 201t Lagerstroemia speciosa, 201t Lamnea acida, 24t Lanatosides, 186 Lanyana, 191t Lapachol, 620f Large intestine, in traditional Chinese Medicine, 53-54, 54t Larrea spp L mexicana, 329 L tridentate, 186, 198t Laurus nobilis, 196t, 388 Lavender (Lavendula angustifolia) analgesic uses of, 355 anesthetic uses of, 352 antidepressant uses of, 354 antispasmodic uses of, 331 anxiolytic uses of, 350 description of, 588-590 diuretic effects of, 376 dosage of, 589-590 drug interactions, 201t drug interactions with, 201t Laxatives aperients, 333 Ayurvedic, 67 bulk, 333 constipation treated with, 333334, 336 description of, 287b purgatives, 333-334 vegetable oils as, 333 Leaf swallowing, 11 Leaky gut syndrome, 314-315, 342 Ledum spp L glandulosum, 383 L latifolium, 383 Lemon balm antacid and antiulcer effects of, 325 antispasmodic uses of, 331 cognitive enhancement uses of, 356 description of, 590-592 dosage of, 591 drug interactions with, 201t nervine uses of, 349 sedative effects of, 349 thyroid gland effects of, 323 Lemongrass, 201t Lentinula edodes, 204t, 638-640 Leonurus cardiaca cardiovascular effects of, 310, 312 drug interactions with, 202t Leopards bane, 388 Lettuce seeds, 449 Leukemia, 304 Leukotrienes, 151 Levisticum officinale, 202t Levodopa, 140t Levy, Juliette de Bairacli, 44 Libellus de Medicinalibus Indorum Herbis, 42 Liber Simplicis Medicinae, 38 Lichen, 162b Licorice adrenal effects of, 320-321 antacid and antiulcer effects of, 325-327 701 Licorice—cont’d antiallergy uses of, 316-317 anti-inflammatory uses of, 317 antispasmodic uses of, 331 antitussive uses of, 369 cough uses of, 4t description of, 315, 592-595 dosage of, 594 drug interactions with, 201t expectorant uses of, 371 kidney function effects of, 378379 urinary tract demulcent uses of, 379 Licorice root glycyrrhizic acid, 127 respiratory uses of, 370 Life expectancy, 123 Lignans, 176-177 Lignins, 177 Ligusticum spp L lucidum, 302 L vulgare, 386 L wallichii, 362-363, 373, 379 Lily of the valley antiarrhythmic effects of, 312 cardiovascular effects of, 310 drug interactions with, 201t Limonene, 170f D-Limonene, 190 Linalool, 588f Linden cardiovascular effects of, 312 nervine uses of, 350 Liniments, 228 Linnaeus, 41 τ-Linolenic acid, 199t Linum usitatissimum anticancer uses of, 301 description of, 176 drug interactions, 199t reproductive cancer treated with, 301 Lipid-lowering herbs, 332 Lipids, 177-178 α-Lipoic acid, 196t Lipophilic extract definition of, 92 of Echinacea angustifolia, 92-93 Liquid seaweed, 242, 242t Liquidambar styrachifolium, 387 Listening examination, in Chinese herbal medicine, 212 LIV 100, 201t Liver Ayurvedic herbs for, 71 Echinacea metabolism by, 94 hypofunctioning of, 341 in Traditional Chinese Medicine, 55 Liver cancer, 304 702 INDEX Lobelia (Lobelia inflata) cough uses of, 4t description of, 187, 269t, 595-596 dosage of, 595-596 expectorant uses of, 370-371 poison ivy and poison oak treated with, 387 respiratory uses of, 373 safety of, 187 wound healing benefits of, 388 Lobeline, 187, 595f Lomatium, 269t Long pepper, 201t Longpepper See Piper spp Looking examination, in Chinese herbal medicine, 212-213 Loosestrife, 385 Lot, 107 Lotions, 227-228 Lotus corniculatus, 442 Lousewort, 383 Lovage, 202t Lower urinary tract disorders, 71 Low-molecular-weight terpenoids, 168-171, 169t Lungs, in traditional Chinese Medicine, 53-54, 54t, 56 Lust, Benedict, 43 Lycium barbarum, 202t Lycopersicon esculentum, 304 Lycopus spp L europaeus antigonadotropic activity of, 321 cardiovascular effects of, 310311 description of, 497-498 dosage of, 498 drug interactions with, 197t L virginicus drug interactions with, 197t thyroid gland effects of, 323 Lymphoma, 304-305 Lymphosarcoma, 304-305 Lythrum (Lythrum salicaria), 385 M Ma Huang, 186 Mace, 188 Maceration, 224-225 Madagascar periwinkle, 202t, 322 Mahabharata, 59-60 Mahat, 61 Mahonia aquifolium antiarrhythmic effects of, 312 anti-inflammatory uses of, 317 avian influenza treated with, 26 bile flow affected by, 331 cancer uses of, 299 dermatologic uses of, 316 Mahonia aquifolium—cont’d description of, 269t, 345, 612-613 drug interactions, 202t Maitake, 596-597 Mala, 63 Malva moschata, 326 Mandragora officinarum, 189t Mange, 45, 319 Mangifera indica, 24t, 25t Manure, 242t, 252 Margosa See Azadirachta indica Marrubium vulgare, 201t, 581-582 Marsh rosemary, 383 Marshmallow, 326-327, 372, 379, 597-598 Mass vaccinations, 21 Master production, 108 Mastitis, 367-368, 443-445, 518-519 Maté, 202t Materia medica, 459-672 in China, 34, 122 definition of, 139 description of, 17 in 18th and 19th centuries, 42 Indian, 60 Matica, 384 Matricaria recutita antacid and antiulcer effects of, 325 antimicrobial uses of, 329 antipruritic properties of, 317318 antispasmodic uses of, 330-331 anxiolytic uses of, 351, 508 bile flow affected by, 331 description of, 171, 507-510 diarrhea treated with, 336-337 dosage of, 509 drug interactions with, 198t goats’ milk and, 508 hepatic effects of, 333 kidney function effects of, 378 mouth lesions treated with, 507508 nervine uses of, 349 sedative effects of, 349, 352 skin inflammation treated with, 508 throat lesions treated with, 507508 wound healing benefits of, 388 Mayapple, 385 Meadowsweet, 325, 343, 598-599 Mechanical scours, 11-12 Medicago sativa, 196t, 464 Medical botany description of, 139-141 elements of, 139 genetically modified crops, 155156 problems associated with, 139-140 Medical botany—cont’d summary of, 156 taxonomy, 141-142 Medical Botany, 139 Medicinal fungi description of, 154-155 hematologic and immunologic disorders treated with, 293 Medicinal plants biodiversity loss, 257-258 conservation status of, 262-263 endangered, 265-269 harvesting of, 253, 262 organic farming of See Organic farming overexploitation of, 258-259 species of, 257 wildcrafting of, 253 Medicine metaphoric approach to, 210-211 plants as, 121-124 traditional, 139-140 Meeh’s formula, 233-234 Megacolon, 336 Melaleuca alternifolia, 190, 384, 646648 Melaleuca oil description of, 190, 192 toxicosis caused by, 129 Melancholic humor, 278, 279t Melanin, 318 Melatonin drug interactions with, 202t neurologic cancers treated with, 302 Melia azedarach, 383 Melilotus officinalis, 204t Melissa officinalis antacid and antiulcer effects of, 325 antispasmodic uses of, 331 cognitive enhancement uses of, 356 description of, 590-592 dosage of, 591 drug interactions with, 201t nervine uses of, 349 sedative effects of, 349 thyroid gland effects of, 323 Meningitis, 360-361 Mentha pulegium, 192, 202t Mentha X piperita antacid and antiulcer effects of, 325 antispasmodic uses of, 331 cough treated with, 622 description of, 621-624 dosage of, 623 drug interactions with, 203t nausea treated with, 622 Menthol, 621f INDEX (−)-Menthol, 170f Menyanthes trifoliata, 197t Mesopotamia, 34 Metabolomics, 155-156 Metastatic inhibitors, 298b Methotrexate, 195t 5-Methoxyhydnocarpin, Methylsulfonyl methane, 104 Methysticin, 355, 586f Metritis, 368, 446 Metronidazole, 601-602 Mexican yam, 344 Mice bitters ingestion by, 9, 13 stress control in, 13 Microcystis aeruginosa, 185 Microfilaments, 144f Microtubules, 144f Milk production, 72, 363 Milk thistle adverse effects of, 602 antacid and antiulcer effects of, 325 anticancer uses of, 300-301, 601 bladder cancer treated with, 302 description of, 599-603 dosage of, 602 drug interactions, 202t hepatic effects of, 332, 600 kidney diseases treated with, 600 lipids affected by, 600-601 metronidazole and, 601-602 pancreatic disorders treated with, 601 toxicology of, 602 Mimosa pudica, 78t Mimulus, 387 Mint, 78t Mistletoe antidiabetic effects of, 321-322 description of, 187 drug interactions with, 202t kidney cancer treated with, 301302 lymphoma/lymphosarcoma treated with, 304-305 nervine uses of, 350 neurologic cancers treated with, 302 Mitchella repens description of, 259 uterine effects of, 364 Mitochondrion, 144f Moist, 281t Momordica charantia description of, 72, 73t, 78t drug interactions with, 197t lymphoma/lymphosarcoma treated with, 305 Monascus purpureus, 293-294 Monkey flower, 387 Monoterpenoids, 168, 169t, 170f Monotropa uniflora, 345 Morinda spp., 202t, 610-611 Mosquitoes, 13 Mossy stonecrop, 385 Mother tinctures, 235 Motherwort cardiovascular effects of, 310, 312 drug interactions with, 202t nervine uses of, 348-349 Mountain ash fruit, 383 Mrig Ayurveda, 60 Mu Xiang, 268 Mucilages description of, 172, 224t gastrointestinal uses of, 326 Mucolytic expectorants, 372 Mucuna spp M pruriens, 78t Newcastle’s disease treated with, 24t Mullein auricular uses of, 386 description of, 239, 603-604 dosage of, 604 expectorant uses of, 371 hemorrhoids treated with, 384 respiratory uses of, 372 Mumie, 154 Musa sapientum, 196t Muscle relaxants, 195t Muscular rheumatism, 347 Musculoskeletal disorders antirheumatics for, 342-343 Ayurvedic treatments for, 71 cranial cruciate ligament rupture, 346 fractures, 347 muscular rheumatism, 347 myopathy, 346 osteoarthritis, 346-347 osteochondritis, 347 overview of, 342 pain, 346 panosteitis, 347 patella luxation, 346 rheumatoid arthritis, 347 spondylosis deformans, 347 trauma, 347 Musculoskeletal pain, 346 Mustard, 191t, 385 Mycology, 155 Myeloma, 304 Myelopathy, 359 Myopathy, 346 Myrica cerifera, 196t Myristica fragrans, 72, 78t, 188, 202t Myristicin, 151 Myrobalan See Terminalia (Terminalia spp.) Myroxylon pereirae, 383 703 Myrrh anti-inflammatory uses of, 344 description of, 73t, 77t, 294, 604605 dosage of, 605 drug interactions with, 200t stomatitis treated with, 386 N N-acylethanolamines, 152 Na+/K+-ATPase pumps, 163 “Nakul Samhita,” 33 Napelline, 185 Nardostachys jatamansi, 73t Naringin, 162f NASC See National Animal Supplement Council Nasturtium officinale, 205t National Animal Supplement Council adverse event reporting system, 111-114, 112f-113f best manufacturing practice standards, 107 Compliance Plus quality program of, 111 description of, 101, 111 industry participants, 108 members of, 111 mission of, 111 website for, 114 National Center for Complementary and Alternative Medicine, 206 National Institutes of Health, 95 National Organic Standards, 252 National Research Council of the National Academies, 129 “Natural,” 124-125 Natural pesticides, 251 Nausea and vomiting, 343, 622 Nectandra pinchurim See Cabalonga tree Neem animal feed uses of, 606-607 contraceptive uses of, 607 dental care treated with, 607 description of, 74t-75t, 605-608 diabetes treated with, 607 dosage of, 607 drug interactions, 202t ectoparasiticidal uses of, 383, 606607 ethnoveterinary uses of, 606b immune effects of, 607 oral tumors treated with, 304 pesticide uses of, 252 ulcer healing of, 607 Nei Jing Su Wen, 51, 55, 217 Nematodes, 442 Neo-Thomsonians, 43 Nepalese neem See Swertia chirata 704 INDEX Nepeta cataria, 197t, 349 Nerium oleander, 188 Nervines Ayurvedic, 67 classification of, 347-348 definition of, 286-288, 347 dermatologic uses of, 318 description of, 346 list of, 289b relaxants, 347-350 stimulants, 348, 356 tonics, 348, 357-358 Nervous system, 238t Nettle anodyne uses of, 386 anti-inflammatory uses of, 317, 343-344 benign prostatic hypertrophy treated with, 363 corns treated with, 385 description of, 608-610 diuretic uses of, 376 dosage of, 609 hemostatic uses of, 384 stinging, 202t, 383 topical uses of, 383 warts treated with, 385 Nettle leaf allergic rhinitis treated with, 370 antiallergy uses of, 316 Neurologic cancers, 302 Neurologic system, 347-362 Neuromuscular purgatives, 333-334 New animal drug approval, 104-105 New England’s Rarities Discovered, 42 New Zealand, 100 Newcastle’s disease description of, 21-22 ethnoveterinary medicine approaches to, 22-25 seasonality of, 22 viral causes of, 22 NHFC See Nonhuman food chain Nicotiana glauca, 26 Nicotine, 595f Nicotine adenine dinucleotide phosphate, 145-146 Nigella sativa, 197t, 301, 449 Nitrates, 195t Nitrogen, 151 Nocturnal restlessness, 360 NodG, 150 Nodular worms, 11 Nonconformity, 107 Nongovernmental organizations, 1820 Nonhuman food chain description of, 101, 103 supplements, 104-106 Noni, 202t, 610-611 Nonsteroidal anti-inflammatory drugs, 194t Nor-dihydroguaiaretic acid, 186 Norlupinane alkaloids, 175b Northern fowl mites, 557 Novel ingredient, 101 N-oxide, 174 Nuclear envelope, 144f Nucleolus, 144f Nucleus, 144f Nutmeg Ayurvedic uses of, 78t clinical studies of, 72 drug interactions, 202t safety of, 188 sources of, 188 Nutrigenomics, 155-156 Nutritive tonics, in Ayurveda, 67 Nux vomica seed description of, 235, 447 stimulatory effects of, 357 O Oats, 202t, 611-612 Obsessive-compulsive disorder, 361, 643-644 Ochna pulchra, 24t Ocimum spp O bacillicum, 78t O basilicum, 204t O gratissimum, 26, 384, 443 O sanctum, 26, 69t, 203t Octacosanol, 129 Oenothera biennis anti-inflammatory uses of, 317 description of, 177 drug interactions with, 199t kidney function effects of, 378 Oil of wintergreen, 191t, 192 Ointment, 382b Ointments, 228 Okra, 384 Olea europaea, 202t Oleander, 188 Oleoresins, 172 Oligofructose, 202t Olive, 202t Omega-3 fatty acids, 148, 177 Onion, 202t Opioid receptors, 152 Opium poppy, 202t Opportunists, 108 Opuntia spp., 203t Oral contraceptives, 195t Oral tumors, 303-304 Oregano, 191t Oregon grape antiarrhythmic effects of, 312 anti-inflammatory uses of, 317 bile flow affected by, 331 cancer uses of, 299 Oregon grape—cont’d dermatologic uses of, 316 description of, 269t, 345, 612-613 drug interactions, 202t Organ function, 288 Organic farming cover crops, 251 definition of, 251 garden for, 242-243 harvesting, 253 importance of, 251 natural pesticides, 251 organic certification, 252-253 pests, 251 resources for, 254b-255b sustainable, 253 techniques for, 251-252 weed control, 251 Orthosiphon spp., 201t Osha, 269t Osteoarthritis, 71, 346-347 Osteochondritis, 347 Ovary, 142f Oxalate urolithiasis, 377 Oxidation, 150 P Paclitaxel, 172 Paeonia lactiflora, 304 Pain herbal treatments for, 347-362 musculoskeletal, 346 taste(s) and, 215 Palkapya, 33, 60 Panax spp P ginseng adrenal effects of, 320 anticancer uses of, 308 antidiabetic effects of, 321 antiemetic uses of, 328 antihyperglycemic effects of, 322 anxiolytic uses of, 351-352 characteristics of, 267-268 cognitive enhancement uses of, 356, 614-615 description of, 163, 353, 613617 diabetes treated with, 615 dosage of, 616 drug interactions, 200t erectile dysfunction, 615 hematologic and immunologic disorders treated with, 291292 hepatic effects of, 332-333 hypolipidemic effects of, 615 immune function affected by, 614 mastitis treated with, 367-368, 444 INDEX Panax spp.—cont’d P ginseng—cont’d physical performance effects of, 614 respiratory effects of, 614 stimulatory effects of, 357 veterinary trials of, 615-616 P quinquefolius antihyperglycemic effects of, 322 characteristics of, 267-268 description of, 262, 353 drug interactions, 200t hematologic and immunologic disorders treated with, 292 history of, 265 nervine uses of, 358 Pancreas, 334 Panosteitis, 347 Pao Zhi, 229-230 Papain, 202t Papaver somniferum, 202t Papaya extract, 202t Paracelsus, 39, 41 Paradisus, 40 Parasites in bears, 11-12 bitter pith for, ectoparasiticidal herbs, 382-383 in insects, 9-10 natural control of, in primates, Parasitism, 441-442 Parkia filicoidea, 24t Parkinson, John, 40 Paroxetine, Parsley description of, 617-619 diuretic effects of, 312, 376 dosage of, 618 ectoparasiticidal uses of, 383 laxative effects of, 334 Partridgeberry description of, 259, 269t uterine effects of, 364 Parvovirus, 341 Passionflower (Passiflora incarnata) anxiolytic uses of, 351, 619 aphrodisiac effects of, 357 central nervous system effects of, 349 description of, 619-620 dosage of, 620 drug interactions with, 202t sedative uses of, 352 Patella luxation, 346 Patents, 130 Pau d’Arco, 202t, 620-621 Paullinia spp P cupana, 187, 200t P sorbilis, 187 P yoko, 205t Pausinystalia yohimbe, 189, 205t PC-SPES, 128 P-cymene, 647f Pectorals, 373-374 Pedicularis, 142 Peduncle, 142f Pelargonium zonale, 384 Pennyroyal oil, 184, 191t, 192, 202t Peppermint antacid and antiulcer effects of, 325 antispasmodic uses of, 331 cough treated with, 622 description of, 621-624 dosage of, 623 drug interactions with, 203t nausea treated with, 622 Peramine, 153 Percolation, 224-225 Perianal fistula, 337 Pericardium, 55 Perilla seed (Perilla frutescens), 148, 369-370, 379 Periodontal disease, 339 Peripheral neuropathy, 361 Peripheral resistance, 311-312 Peripheral vasodilators, 311-312 Periploca of the wood See Gymnema Periwinkle, 203t Peroxisome, 144f Persicaria senegalense, 368 Peru balsam tree, 383 Pessaries, 228 Pesticides, 251 Pests, 251 Petal, 142f Petasites hybridus gastrointestinal uses of, 326 respiratory uses of, 370 Petroselinum crispum description of, 617-619 diuretic effects of, 312, 376 dosage of, 618 ectoparasiticidal uses of, 383 laxative effects of, 334 Peumus boldus, 197t Pharmacodynamic synergy, Pharmacogenomics, 155, 157 Pharmacokinetic synergy, Pharmacy, 231 Pheasant’s eye, 203t Phenethyl isothiocyanate, 165 Phenobarbital, 194t Phenolic resins, 172 Phenylethylisothiocyanate, 165f Phenylpropanoids absorption of, 171 description of, 168-169 herbs with high content of, 170b Phlegm, 53, 53b, 57t, 63, 209 Phlegmatic humor, 278, 279t 705 Phoradendron serotinum, 187 Photosynthesis chloroplasts, 146 phases of, 145-146 Phyllanthus, 203t Phyllanthus spp drug interactions, 203t P amarus, 79t P emblica, 73t, 77t P niruri, 79t Physica, 38 Physiomedical colleges, 122 Physiomedicalism description of, 279 prescribing practices, 279-280 Physiomedicals, 43 Physostigma mesoponticum, 24t Phytoecdysteroids, 151 Phytoestrogens, 167 Phytol, 146 Phytolacca spp description of, 188 P americana, 302-304, 345, 626627 P decandra, 316 precautions regarding, 306 Phytomedicines, 99 Phytophagous insects, 151 Phytopharmacology description of, 88-89 knowledge gaps in, 91-92 Phytosterols, 148, 173 Phytotherapist, 96 Phytotherapy definition of, 87 description of, 44 evidence-based medicine and, 9596 Picraconitine, 185 Picrorrhiza kurroa, 73t, 79t, 268 Pigs feed efficiency of, 539 immune function in, 539-540 preweaning diarrhea in, 337 Pigweed See Boerhaavia diffusa Pimpinella anisum adrenal effects of, 321 drug interactions with, 196t hepatic effects of, 333 α-Pinene, 631f Piper spp P angustifolium, 384 P longum description of, 79t drug interactions with, 201t lymphoma/lymphosarcoma treated with, 305 P methysticum adverse effects of, 587 anesthetic uses of, 352 anticonvulsant uses of, 355 706 INDEX Piper spp.—cont’d P methysticum—cont’d antispasmodic uses of, 353 anxiolytic uses of, 351 characteristics of, 267 description of, 187 dosage of, 587-588 drug interactions, 201t nervine uses of, 357-358 sedative uses of, 352 P nigrum Ayurvedic uses of, 69t, 79t drug interactions, 197t Newcastle’s disease treated with, 24t Pipsissewa, 269t Piscidea erythrina analgesic uses of, 345, 355 sedative effects of, 349, 352 Pitta, 62, 62t, 64b, 67b, 278 Pitta-Kapha, 63b Plant(s) anatomy of, 142-145 biodiversity loss, 257-258 compartments in, 145f constituents of, 222 cultivation of, 222, 260, 260t-261t detoxification, 153 as drugs, 124, 140t energy compounds of, 146 environmental interactions by, 156 exaptation, 149b floras for, 142-143 genetically modified, 155-156 hallucinogens from, 151, 152f herbicidal resistance by, 153 hormone synthesis by, 144-145 hydrophilic and hydrophobic compounds, 145b identification of, 142-143 medicinal products from, 145 as medicine, 121-124 name of, 141 parasite control using, 8-12 pharmaceutical names of, 141 poisonous, 245b stress resistance by, 151 substances synthesized by, 154t taxonomy of, 141-142 topical applications of, 12-13 toxins from, clay ingestion to inactivate, 11 vascular system of, 144 viral diseases in poultry treated with, 27t volatile oils in, 145 whole, 125 wild harvesting of, 259-260, 260t261 Plant blindness, 140 Plant cells animal cells vs., 143b, 144f description of, 143 plasma membrane of, 143 signal transduction in, 143-144 wall of, 143 Plant compounds alkaloids, 174-176, 175b defense, 145, 150-153 diterpenoids, 171-172, 172f endophytic communication, 150 flavonoids See Flavonoids glucosinolates, 165 glycosides See Glycosides lignans, 176-177 lignins, 177 lipids, 177-178 microbial associations with, 150 multiple uses of, 149 omega-3 fatty acids, 148 pathogenesis-related proteins, 148 phytosterols, 148 polysaccharides See Polysaccharides primary, 148, 159 resins, 172, 173b secondary, 148, 159 steroidal saponins, 172-173 synthesis of, 148 triterpenoids, 172-173, 174b waxes, 178 Plant metabolism, 139 Plantago spp drug interactions, 203t P lanceolata, 326, 388 P major, 372, 384, 388, 624-625 P ovata colitis treated with, 336 description of, 79t laxative effects of, 334 Plantain, 203t, 388, 624-625 Plasmodesmata, 143 Plaster, 382b Plastids, 143 Platelet-activating factor inhibitors, 300 Platycodon grandiflorum, 196t Plectranthus barbatus, 73t, 76t, 311, 553-554 Pleurisy root anticatarrhal uses of, 373 description of, 188, 269t, 625-625 dosage of, 626 drug interactions with, 203t Pliny, 61, 122 Plumeria rubra, 199t Pneumonia, 375 Podophyllotoxin, 176, 178f Podophyllum peltatum, 176, 189t, 385 Poison hemlock, 387 Poison ivy, 387 Poison oak, 387 Poisoning by digitalis, 186 mechanisms of, 184 Poke root, 316, 626-627 Pokeweed description of, 188, 345 oral tumors treated with, 303-304 osteosarcoma treated with, 302303 Pokeweed mitogen, 188 Polygala senega, 371 Polysaccharides administration of, 161 complex, 159, 161 definition of, 159 description of, 92, 159, 161 drug absorption affected by, 161 gastrointestinal uses of, 326-327 gel-forming, 159, 161, 162b herbs with high amounts of, 162b mechanism of action, 161 safety of, 161 solubility of, 224t structure of, 160f Polyterpenoids, 169t Polyuronides, 159 Pomegranate See Punica granatum Porphyrin, 146 Posology, 232 Postnatal Essence, 51 Potentiation, 235 Potentilla spp P erecta, 329 P reptans, 627-628 P tormentilla, 327 Poultices, 229, 382b Poultry Astragalus spp applications, 479 growth of, 522 respiratory signs in, 26, 27t Poultry manure, 242t, 252 Powdered extract, 223b Prakruti, 61 Prana, 61 Pregnancy in dairy cows, 445-446 false, 368 herbs contraindicated during, 365b-366b Prenatal Essence, 51 Prescribing for cancer, 307-309 case study of, 290 description of, 125-126 humoral theory, 278-279 orthodox medicine vs., 275-276 physiomedicalism, 279-280 practices for, 218-219 traditional approaches to, 276-280 INDEX Prescribing—cont’d traditional Chinese Medicine, 277-278 Prickly ash, 311, 346, 628-629 Prickly pear, 203t Prickly poppy, 385 Primates, 8-9 Primula root (Primula spp.), 371 Privet leaves, 386 Proanthocyanidins, 165, 167, 572 Probenecid, 195t Procyanidin B1, 571f Procyanidin B2, 571f Procyanidin B3, 571f Procyanidin B4, 571f Production batch, 108 Chinese herbal production techniques, 106b master, 108 testing after, 109 Prokaryote, 157 Proportionate dose, 234-235 Prostaglandin F2α, 445 Prostaglandins, 151 Prostate cancer, 302 Protoalkaloids, 174, 175b Protodioscin, 650f Protozoal parasites, 329, 443 Prunasin, 662f Prunus serotina, 369, 661-662 Pseudoalkaloids, 175b Pseudocyesis, 368 Pseudoephedrine, 186 Pseudohypericin, 2-3, 91, 643f Pseudomelanosis coli, 164 Psidium spp., 200t Psoralea carylifolia, 73t Psyllium antibacterial uses of, 384 drug interactions with, 203t laxative effects of, 334 Psyllium blond psyllium See Plantago spp Pterocarpus spp P marsupium, 73t P santalinus, 203t Pueraria lobata, 91, 201t Pulegone, 184, 205 Pulsatilla (Pulsatilla vulgaris), 349 Pulse, 213-214, 214b Pulse depth, 214 Pulses, in Ayurveda, 64-65, 65t Pumpkin seed, 363, 379 Puncturevine, 312 Pungent taste, 215b, 216, 218 Punica granatum, 69t, 79t, 339 Purgatives, 67, 333-334 Purine alkaloids, 175b Purusha, 61 Pussy willow, 387 Pygeum (Pygeum africanus), 363 Pyoderma, 320 Pyrethrum, 382-383 Pyridine alkaloids, 175b Pyrrolizidine alkaloids chemical structure of, 517f description of, 174-175, 176b toxicity of, 184 Pyrrolizidine toxins, 128 Pyrus aucuparia, 383 Q Qi, 52-53, 54t, 61 Qimin yaoshu, 122 “Quack’s Charter, The,” 41 Quality assurance, 107, 127 Quality audit, 107 Quality control best manufacturing practices, 106 definitions, 107-108 example of, 108-109 finished product quality, 107 good manufacturing practices, 106 importance of, 105 issues associated with, 105-106 lack of, 126-127 raw materials, 105-106 Quality control procedures, 107 Quality systems requirements, 107 Quantitative analysis, 106 Quercetin, 166, 203t, 564f, 643f Questioning, 211-212 Questioning examination, in Chinese herbal medicine, 211-212 Quillaja saponaria, 371 Quince seed, 384 Quinidine, 11 Quinine chemical structure of, 178f historical uses of, 124 Quinine sulfate, 447 Quinoline alkaloids, 175b R Rafinesque, Constantine, 42 Raphanus sativa, 79t Rasayana herbal therapy, 68 Raspberry drug interactions with, 203t uterine effects of, 364 Rationalism, 35 Rauwolfia serpentina, 79t, 201t Raw materials definition of, 107 laboratory characterization of, 106 quality of, 105-106, 221 sources of, 142, 221 substitution of, 221 toxicity of, 126 707 Reactive oxygen species, 150, 308 Receptacle, 142f Red algae, 162b Red clover dermatologic uses of, 316 drug interactions with, 203t osteosarcoma treated with, 302 prostate cancer treated with, 302 Red ginseng, 267-268 Red root, 373 Red rose, 385 Red sandalwood, 203t Red yeast rice, 293-294 Redgrape, 299-300 5α-Reductase, 150 Regulations definitions, 101 Dietary Supplement Health and Education Act, 101-102, 104, 128, 140 global, 99-101 industry efforts, 104-105 solutions regarding, 105 timeline of, 102b Rehmannia (Rehmannia glutinosa) antiallergy uses of, 317 antihyperglycemic effects of, 323 description of, 161, 292, 315, 629630 hematologic and immunologic disorders treated with, 292 Reishi, 203t Renaissance, 39 Renal cancer, 301-302 Reproductive disorders abortion, 364-365 agalactia, 365 in dairy cows, 445-446 endocrine modulators, 362-363 false pregnancy, 368 infertility, 367 mastitis, 367-368 metritis, 368, 446 overview of, 362 pseudocyesis, 368 vaginitis, 368-369 Reproductive system, 238t Research efficacy and, 89-91 emphasis in, 90b information about, 94-95 overview of, 87-88 quality, 89-91 synergy considerations, 89-91 Reserpine, 140t, 177f Resins description of, 172, 173b, 184 solubility of, 224t Respiratory cancer, 301 708 INDEX Respiratory disorders allergic bronchitis, 374 antitussives, 369 equine chronic obstructive pulmonary disease, 374 expectorants, 370-372 feline viral upper respiratory disease, 375 overview of, 369 pneumonia, 375 rhinitis, 375 Respiratory system, 238t Retinoic X receptors, 148 Rhabdomyosarcoma, 303 Rhamnus spp R frangula, 197t R purshiana, 197t Rhaponticum carthamoides, 151 Rhatany, 384 Rheum spp R officinale, 203t, 334 R palmatum, 164 Rheumatoid arthritis, 347 Rhinitis, 370, 375 Rhizoma coptidis, 301 Rhodiola (Rhodiola rosea) description of, 292 for hematologic and immunologic disorders, 292 Rhubarb drug interactions with, 203t laxative effects of, 334 Ribes nigrum, 197t Ribosomes, 144f Ribwort, 326 Ricinus communis, 178, 197t Riddelliine, 176f Rig veda, 33 Roast figs, 388 Roman chamomile, 203t Rosa spp R damascene, 79t R gallica, 385 Rosemary (Rosmarinus officinalis) cancer uses of, 300 drug interactions, 203t stimulatory effects of, 357 Rubefacient, 382b Rubia cordifolia, 80t Rubisco, 147 Rubus spp R fruticosus astringenic activity of, 327 description of, 490-491 dosage of, 491 drug interactions with, 197t R idaeus drug interactions with, 203t uterine effects of, 364 R occidentalis, 303 Rue, 203t “Rule of three,” 129 Rumex spp R acetosella, 299, 637-638 R crispus, 316, 345, 668-669 Ruminants classification of, 441 dairy cows See Dairy cows diarrhea in, 447 Ruscus aculeatus, 197t Ruta graveolens, 203t S Sabal serrulata, 204t Saccardo Clavicipitaceae, 155 Sacred basil, 203t S-Adenosylmethionine, 203t Safety adverse reactions and interactions, 129-130 health risks, 128 historical aspects of, 128 indirect risks, 130 legal barriers, 128-129 Safflower, 203t Sage, 203t, 630-632 Saiboku-to, 203t Saint John’s Wort active constituents of, 1-3, 2t, 188 adverse effects of, 644 analgesic uses of, 345, 355 anticonvulsant uses of, 355 antidepressant uses of, 354 anxiolytic uses of, 350 cognitive enhancement uses of, 356 contraindications, 185 description of, 642-645 dosage of, 644 drug interactions, 204t, 644 epilepsy treated with, 355 kidney cancer treated with, 302 monoamine oxidase inhibitors and, 644 obsessive-compulsive disorder treated with, 643-644 safety of, 188 stress treated with, 354 toxicology of, 644 wound healing benefits of, 388 Sairei-To TJ-114, 203t Salicin, 124, 664f Salicylates cats and, 190b pharmacokinetics of, 190b Salicylic acid description of, 124, 149 systemic acquired resistance use of, 151 Salix spp description of, 188-189 drug interactions with, 205t Salix spp.—cont’d S alba, 343, 664-666 S nigra, 387 S-allylcysteine, 556 Salty taste, 215b, 216 Salve, 382b Salvia spp S miltiorrhiza angiotensin-converting enzyme inhibitors, 312 antacid and antiulcer effects of, 326 anticoagulant effects of, 312 cancer uses of, 300 cardiovascular effects of, 311 description of, 530-532 dosage of, 531 drug interactions, 198t hematologic and immunologic disorders treated with, 292 hepatic effects of, 332 reproductive uses of, 363 S officinalis, 203t, 630-632 Sama, 63b Sambucus spp S canadensis, 199t S nigra anticatarrhal uses of, 373 description of, 542-543 dosage of, 543 drug interactions with, 199t Sambunigrin, 542f Sandalwood See Santalum album Sanguinaria canadensis auricular uses of, 386 cardiovascular effects of, 311 description of, 251b, 492-493 dosage of, 493 escharotic uses of, 384-385 expectorant uses of, 371 stomatitis treated with, 386 substitutes for, 269t Sanguinarine, 176, 493 Sanguine humor, 278, 279t Santalum album, 80t Saponins description of, 173, 174b solubility of, 224t Sarcoma fibrosarcoma, 303 lymphosarcoma, 304-305 osteosarcoma, 302-303 rhabdomyosarcoma, 303 Sarcopoterium spinosum, 205t Sarothamnus scoparius, 310 Sarsaparilla dermatologic uses of, 316 description of, 345, 632-633 dosage of, 633 drug interactions with, 203t Sarsapogenin, 632f INDEX Sassafra, 203t Sassafras albidum, 203t Sassafras oil, 191t, 192 Saussurea spp S costus, 268 S lappa, 262, 268 Savin, 191t Savory, 191t Saw palmetto benign prostatic hypertrophy treated with, 363, 380, 633634 description of, 633-635 dosage of, 634 drug interactions with, 204t prescribing of, 219 wildlife use of, 258-259 Saxifraga ligulata, 80t Schisandra (Schisandra chinensis), 300, 332, 354, 635-637 Science, 87 Scientism, 33, 87 Scopolamine, 140t, 174 Scopolia, 204t Scopolia carniolica, 204t Scotch broom, 204t Scours, mechanical, 11-12 Scrofula, 382b Scrophularia nodosa, 199t, 388 Scutellarein, 641f Scutellaria spp S baicalensis antiallergy uses of, 316 anticonvulsant uses of, 355 antispasmodic uses of, 353 anxiolytic uses of, 351 description of, 482-483 dosage of, 482 drug interactions with, 196t nervine uses of, 357 S lateriflora anticonvulsant uses of, 355 anxiolytic uses of, 351 description of, 640-642 dosage of, 641 drug interactions with, 204t epilepsy treated with, 355 indications for, 350 Scutellarin, 140t Sedum spp., 385 Seizures, 361 Selenicereus grandiflorus cardiovascular effects of, 310 drug interactions with, 198t Self-administration of drugs, 14 Self-medication applications of, 13-14 description of, 7-8 geophagy, 10-11 Self-medication—cont’d hedonic feedback and, 7-8, 13-14 laboratory explorations of, 13 learning and, 14 mechanical scours, 11-12 mechanisms of, 13 parasite control, 8-12 for stress, 13 Self-regulation, Senecio maritima, 385 Senega snakeroot, 204t, 371 Senna, 188, 204t Senna alexandrina, 162 Senna pod, 334 Sennoside A, 91 Sennoside C, 91 Sepal, 142f Serenoa repens benign prostatic hypertrophy treated with, 363, 380, 633634 description of, 633-635 dosage of, 634 drug interactions with, 204t prescribing of, 219 wildlife use of, 258-259 Serpentine root See Rauwolfia serpentina Sertraline, Sesamum spp S angolense, 24t S indicum, 80t Sesquiterpenoids, 169t, 170-171 Sex hormones, 195t Shalihotra, 33, 60 Shang Han Lun, 215 Shang Non Ben Cao Jing, 215 Shankhapushpi, 204t Shatter stone See Phyllanthus spp Sheelajeet, 80t Sheep sorrel, 299, 637-638 Shen, 54 Shen Nong, 34, 215-216 Shen Nong Ben Cao Jing, 34 Sheng xue ling, 296 Shiitake, 204t, 638-640 Shilajeet, 68 Shilajit, 80t, 154 Shook, Edward, 43 Sho-saiko-to, 121 Sho-saiko-To TJ-9, 204t Si Jun Zi Tang, 277 Sialogogues, 329-330 Siberian ginseng description of, 353, 544-546 dosage of, 546 drug interactions, 204t stress treated with, 354 Signal transduction, 143-144 Silibinin, 600f Silver ragwort, 385 709 Silybum marianum adverse effects of, 602 antacid and antiulcer effects of, 325 anticancer uses of, 300-301, 601 bladder cancer treated with, 302 cancer uses of, 300 description of, 599-603 dosage of, 602 drug interactions, 202t hepatic effects of, 332, 600 kidney diseases treated with, 600 lipids affected by, 600-601 metronidazole and, 601-602 pancreatic disorders treated with, 601 toxicology of, 602 Silymarin, 140t Simmondsia chinensis, 178 Simple prescription, Sinapisa spp., 385 Sitosterol, 148, 632 Skin See also Dermatologic conditions Ayurvedic treatments for, 70 chronic disease of, 314-315 dry, 318-319 Skin allergies, 319 Skullcap anticonvulsant uses of, 355 anxiolytic uses of, 351 description of, 640-642 dosage of, 641 drug interactions with, 204t epilepsy treated with, 355 indications for, 350 Slippery elm antacid and antiulcer effects of, 327 characteristics of, 267 cough uses of, 4t description of, 269t, 642 drug interactions, 204t respiratory uses of, 372 Small cell lung carcinoma, 301 Small intestine, in traditional Chinese Medicine, 54-55 Smilax spp dermatologic uses of, 316 description of, 345, 632-633 dosage of, 633 drug interactions with, 203t Snakebite, 387 Soap bark, 371 Soft extract, 223b Soil, 239-240, 242t Solanum spp S dulcamara, 189t S lycocarpum, S nigrum, 80t Solid extract, 223b 710 INDEX Solidago virguarea, 200t, 380, 564565 Somatic cell count, 443 SOP See Standard operating procedures Sorbus aucuparia, 383 Sorbus fruit, 383 Sour taste, 215, 215b Southernwood, 191t Soybeans, 204t Sparteine, 177f Spasmolytic herbs, 345 Spasmolytics, 330-331 Specific prescription, 3, 4t Spikenard, 269t Spleen, in traditional Chinese Medicine, 52-53, 53b Splitters, 141 Spondylosis deformans, 347 Sponghel See Plantago spp Square root formula, 233 Squill drug interactions with, 204t expectorant uses of, 371 Srotas, 63-64 St John’s Wort See Saint John’s Wort Standard operating procedures, 107108 Standardization, 127, 255 Standardized extract, 223b Stasis, 212b Statice caroliniana, 383 Stellaria media, 512-513 Stephania tetrandra, 204t Steroidal saponins, 172-173 Stigma, 142f Stigmasterol, 148 Stimulants Ayurvedic, 67 circulatory, 311, 345-346 drug interactions with, 194t herbs used as, 57 nervine, 348, 356 Stimulating expectorants, 370-371 Stinging nettle, 202t Stomach, in traditional Chinese Medicine, 52-53, 53b Stomachics, 329-330 Stomatitis, 342, 386 Stone breaker See Phyllanthus spp Stoneroot, 269t, 377 “Stop sale” orders, 103 Stress adaptogens effect on, 151, 315 description of, 286 herbs for, 354, 361-362 mammal resistance to, 151 plant resistance to, 151 self-medication of, 13 Stroke, 362 Strophanthus, 204t Strophanthus spp., 204t Strychnos spp S nux-vomica, 235, 357 S potatorum, 24t Style, 142f Styptic, 382b Succi, 227-229 Sulla, 442 Sumerians, 34 Sundew, 269t Supercritical CO2 extracts, 225 Supplements background of, 101-103 consumer questions about, 109 nonhuman food chain, 104-106 quality of, 108-109 regulation of, 101 Suppositories, 228 Sushumna, 64 Swallow wart See Calotropis gigantea Swartzia madagascariensis, 24t Sweet basil, 204t Sweet bay, 388 Sweet birch, 191t Sweet clover, 204t Sweet gum, 387 Sweet taste, 215b, 216, 218 Sweet wormwood, 645-646 Swertia chirata, 80t Sympathomimetics, 195t Symphytum spp description of, 186 S officinalis antacid and antiulcer effects of, 325, 327 description of, 175, 517-519 mastitis treated with, 367, 518519 respiratory uses of, 372 Synadenium volkensii, 24t Synephrine, 140t Synergy bioavailability enhanced by, 91 description of, 3, 91 Syrups, 227 Systemic acquired resistance, 151 Syzgium spp S aromaticum anesthetic uses of, 352 description of, 357, 515-516 drug interactions with, 198t S caryophyllata, 80t S cumini, 73t Szechuan lovage root, 362-363 T Tabebuia spp., 202t, 620-621 Tabernanthe iboga, 201t Tanacetum spp T cinerariifolium, 382-383 T parthenium Tanacetum spp.—cont’d T parthenium—cont’d anti-inflammatory uses of, 343 description of, 552-553 dosage of, 553 drug interactions with, 199t Tannins adaptive taste preferences to, 8-9 alkaloid combinations, 226 condensed, 165, 167t, 167-168 enzymes inhibited by, 168 herbs with high levels of, 168b, 226b hydrolyzable, 167-168 in khat, 187 medicinal uses of, nausea caused by, 168 properties of, 168 solubility of, 224t Tanshinone, 530f Tansy, 191t Tapeworms, 11 Taraxacum officinale antihyperglycemic effects of, 323 bile flow affected by, 331 cancer uses of, 299 description of, 532-534 diuretic effects of, 312, 376 dosage of, 533 drug interactions, 198t pancreatic effects of, 334 Taraxasterol, 532f Tarragon antidiabetic effects of, 321-322 description of, 191t drug interactions with, 204t Taste(s) bitter, 215b, 215-216, 218 combining of, 217-218 importance of, 215-216 pain relief and, 215 pungent, 215b, 216, 218 salty, 215b, 216 sour, 215, 215b sweet, 215b, 216, 218 Taxol, 140t Taxonomy, 141-142 Taxus brevifolia, 172 Tea antipruritic properties of, 318 black See Black tea drug interactions with, 204t-205t green See Green tea mastitis treated with, 367 topical uses of, 383 Tea tree, 191t, 384 Tea tree oil, 129, 646-648 Temperament, 278-279 Tephrosia spp T purpura, 80t T vogelii, 24t INDEX Terminalia (Terminalia spp.) T arjuna, 72, 311 T belerica, 80t T chebula, 80t Terpenoids low-molecular-weight, 168-171, 169t monoterpenoids, 168, 169t, 170f polyterpenoids, 169t sesquiterpenoids, 169t synthesis of, 168, 169f tetraterpenoids, 169t Terpinene, 647f delta-9-tetrahydrocannabinol, 152 Tetraterpenoids, 169t Teucrium chamaedrys, 187 Textbook of Pharmaceutical Botany, 139 Theatrum Botanicum, 40 Theobroma cacao, 198t Therapeutic efficacy, 89-91 Thevetia peruviana, 205t Thomson, Samuel, 42 Thomsonian movement, 122 Thomsonian System of Practice, 42 Thorny burnet, 205t Thrombocytopenia, 296 Thuja (Thuja occidentalis), 191t, 385, 649-650 Thujone, 649f Thunder god vine, 293 Thylakoids, 146 Thyme (Thymus vulgaris) antimicrobial uses of, 329 antispasmodic uses of, 331 cough uses of, 4t respiratory uses of, 373 Thyme-leaved gratiola See Bacopa Thyroid-stimulating herbs, 323 Tian Qi, 54t Tilia cordata, 326 Tiluia platyphyllos cardiovascular effects of, 312 nervine uses of, 350 Tinctures advantages of, 224 alcohol-based, 224 dispensing of, 226 fresh plant, 226 glycerin, 230 maceration of, 224-225 mother, 235 percolation of, 224-225 preparation of, 224 strength of, 224 Tinospora spp T cordifolia, 80t T rumphii, 442 Tissue function, 288 Titus, Nelson N., 44 Tomato, 304 Tongue, 212-213, 213b Tonic herbs actions of, 286t Ayurvedic, 67-68 immune system effects, 295 indications for, 285-286 nervine, 357-358 nutritive, 67 rejuvenating, 67-68 renal, 378-379 uterine, 363-364 Tonka, 205t Topical herbs ectoparasiticidal herbs, 382-383 overview of, 381-382 Tormentil antiviral uses of, 329 astringenic activity of, 327 Touch examination, in Chinese herbal medicine, 213-214 Toxemia, 314 Toxicity description of, 184 of guarana, 187 historical aspects of, 128 information sources regarding, 206 of kava kava, 187 species differences in susceptibility to, 184 Trachyspermum ammi, 81t Traditional Chinese Medicine See also Chinese herbal medicine Ayurveda influences on, 61 bladder in, 52 description of, 33 Ephedra sinensis in, 140 gallbladder in, 55-56 heart in, 54-55 history of, 209-210 kidneys in, 51-52 large intestine in, 53-54, 54t liver in, 55 lungs in, 53-54, 54t, 56 prescribing in, 277-278 principles of, 210-211 small intestine in, 54-55 spleen in, 52-53, 53b stomach in, 52-53, 53b summary of, 56-58 Triple Burner, 55-56 Traditional diagnosis, 276 Traditional medicine, 139-140 TRAFFIC, 265 Trailing eclipta See Eclipta alba Trans-Tasman Therapeutic Products Agency, 100 Trattinickia aspera, 13 Treatment goals, 282-283 Tribulus (Tribulus terrestris) angiotensin-converting enzyme inhibitor effects of, 312 711 Tribulus (Tribulus terrestris)—cont’d aphrodisiac effects of, 357 cardiovascular effects of, 311 description of, 73t, 81t, 650-652 diuretic effects of, 377 dosage of, 651-652 hypotensive effects of, 651 kidney stones treated with, 378 reproductive uses of, 363 Trichomes, 11, 146f Trichostrongylus spp., 443 Tridosha constitutions from, 63b description of, 61-62 Trifala description of, 68 immune-mediated hemolytic anemia treated with, 70 Trifolium pratense dermatologic uses of, 316 drug interactions with, 203t osteosarcoma treated with, 302 Trigonella foenum-graecum antacid and antiulcer effects of, 326-327 antihyperglycemic effects of, 322 Ayurvedic uses of, 69t, 81t colon cancer treated with, 304 description of, 549-552 dosage of, 551 drug interactions with, 199t hypocholesterolemic effects of, 332 indications for, 384 respiratory uses of, 372 Trikatu, 205t Trillium, 269t, 302 Triphala, 68, 81t Triple Burner, 55-56 Tripterygium wilfordii, 293, 379 Triterpenes, 151 Triterpenoids, 172-173, 174b Triticum aestivum, 336 Troches, 227 Tropane alkaloids, 175b Trophorestorative, 288 Tryptamines, 151, 153f Tryptophan, 151, 152f, 153t Tuberville, George, 40 Tumor necrosis factor-α, 93 Turkey tail mushroom, 305 Turmeric adverse effects of, 654 antacid and antiulcer effects of, 325 antidiabetic effects of, 321 anti-inflammatory uses of, 26, 317, 344 Ayurvedic uses of, 69t, 73t, 77t cancer uses of, 300 constituents of, 73t 712 INDEX Turmeric—cont’d description of, 652-655 dosage of, 654 drug interactions, 205t ethnoveterinary uses of, 653 ocular uses of, 653 oral tumors treated with, 303 toxicology of, 654 Turnera diffusa, 198t, 529-530 Tussilago farfara, 189t, 198t, 372 Tylophora spp T asthmatica, 73t, 370 T indica, 73t, 81t, 293, 370 Tylostemon spp., 24t Tyrosine, 151, 152f, 152t U Ulcerative colitis, 336, 495 Ulcers, 343 Ulmus spp., 204t U fulva antacid and antiulcer effects of, 327 characteristics of, 267 cough uses of, 4t description of, 269t drug interactions, 204t respiratory uses of, 372 U rubra antacid and antiulcer effects of, 327 characteristics of, 267 cough uses of, 4t description of, 269t, 642 drug interactions, 204t respiratory uses of, 372 Uncaria U rhynchophylla anticonvulsant uses of, 356 cardiovascular effects of, 311312 U tomentosa description of, 505-507 dosage of, 506 drug interactions with, 197t lymphoma/lymphosarcoma treated with, 305 United States of America, 100-101 Upper respiratory infections, 538540 Urginea maritima drug interactions with, 204t expectorant uses of, 371 Urinary system, 238t Urinary tract antimicrobials, 379-380 antiseptics, 379-380 astringents, 380 Urinary tract disorders bladder stones, 381 cystitis, 380 Urinary tract disorders—cont’d incontinence, 381 interstitial cystitis, 381 overview of, 375-376 urolithiasis, 381 Urogenital cancers, 301-302 Urolithiasis, 381 Uronic acid, 162 Urtica dioica antiallergy uses of, 316 anti-inflammatory uses of, 317, 343-344 benign prostatic hypertrophy uses of, 363, 609 corns treated with, 385 description of, 608-610 diuretic uses of, 376 dosage of, 609 drug interactions with, 202t hemostatic uses of, 384 kidney function effects of, 379 warts treated with, 385 US Pharmacopoeia, 109 US Small Ruminant Collaborative Research Support Project, 18 Uterine astringents, 363 Uterine tonics, 363-364 Uva ursi antidiabetic effects of, 321-322 description of, 655-657 diuretic effects of, 377 dosage of, 656 drug interactions with, 205t melanin synthesis affected by, 205t, 318 urinary tract uses of, 380 V Vaccinations, 21, 467 Vaccinium spp drug interactions with, 198t V macrocarpon, 377, 379-380, 528529 V myrtillus antacid and antiulcer effects of, 325 antihyperglycemic effects of, 322 cancer uses of, 300 description of, 485-486 dosage of, 486 drug interactions, 197t Vacuoles, 143 Vaginitis, 368-369 Valepotriate, 657f Valerian root, 205t Valerian (Valeriana officinalis) antispasmodic uses of, 353 cardiovascular effects of, 311-312, 658-659 description of, 81t, 90, 657-659 Valerian (Valeriana officinalis)—cont’d dosage of, 658, 659 drug interactions with, 205t insomnia treated with, 658 sedative uses of, 350, 352 spasmolytic uses of, 345 stress treated with, 658 Varuna, 659-661 Vasant Lad, 33 Vasodilators, 311-312 Vata, 62, 62t, 64b, 67b, 278 Vata-Kapha, 63b Vata-Pitta, 63b Vegetable oils, 333 Vegetius, 37 Venus fly trap, 269t Veratrum spp V album, 383 V verde, 201t Verbascum spp V densiflorum, 371 V thapsus auricular uses of, 386 description of, 239, 603-604 dosage of, 604 expectorant uses of, 371 hemorrhoids treated with, 384 respiratory uses of, 372 Verbena officinalis, 205t Vernonia spp V amygdalina, V cinerea, 447 Vernonioside B1, Vervain, 205t Vesicant, 382b Vestibular disease, 362 Veterinarian herbal medicine for, 255 word origin of, 36 Veterinary Applied Pharmacology and Therapeutics, 46 Veterinary botanical medicine in Americas, 42 Anglo-Saxon, 37t in antiquity, 33-35 in Central America, 42 in China, 34 controlled trials, 130-131 in Dark Ages, 37-38 in Egypt, 35 in France, 41-42 history of, 33, 44-46, 122 in Japan, 35-36 in Middle East, 39 recommendations for, 131 in Renaissance, 39 renewed interest in, 46-48 in Rome, 36-37 skepticism regarding, 121-133 Veterinary Botanical Medicine Association, 47, 269-270 INDEX Veterinary ethnopharmacopoeia, 17 Veterinary herbalists, 105 Veterinary International Cooperation on Harmonization, 106 Veterinary Medicines, Their Actions and Uses, 46 Veterinary Posology, 46 Veterinary schools, 44 Viburnum opulus antispasmodic uses of, 353, 379 description of, 527-528 dosage of, 527-528 spasmolytic uses of, 345 uterine effects of, 364 Viburnum prunifolium, 353, 364, 385, 488 Vinblastine, 140t Vinca spp V major, 189t V minor, 189t, 203t V rosa, 74t Vinegar extracts, 225 Viola tricolor, 316 Virginia snakeroot, 269t Viscum album antidiabetic effects of, 321-322 description of, 187 drug interactions with, 202t eurixor, 305 helixor, 305 iscador, 305 kidney cancer treated with, 301302 lymphoma/lymphosarcoma treated with, 304-305 nervine uses of, 350 neurologic cancers treated with, 302 Vital force, 140, 276-277 Vitalism, 276 Vitex agnus-castus anticancer uses of, 301 description of, 510-512 dosage of, 511 drug interactions, 198t ectoparasiticidal uses of, 383 hyperadrenocorticism in horses treated with, 511 milk production affected by, 363 premenstrual syndrome treated with, 362, 510-511 Vitis vinifera, 200t, 299-300, 301, 570-574 Volatile oils definition of, 183 description of, 145 plants that contain, 183-184 properties of, 171 Vomiting and nausea, 343 Vulnerary, 382b Vulnerary herbs, 387-388 W Warts, 385 Watercress, 205t Waxes, 178 Wei Qi, 54 Wen-She decoction, 294 Western red cedar, 191t Wheat grass, 336 White ash tree bark, 383 White balsam, 383 White hellebore, 122, 383 White peony, 304 White sage, 269t White willow, 188-189 Wild carrot, 205t Wild celery See Trachyspermum ammi Wild cherry, 661-662 Wild cherry bark, 369 Wild harvesting, 259-260, 260t-261 Wild indigo, 269t Wild lettuce, 352 Wild plants overharvesting of, 259-260 wildlife use of, 258-259 Wild yam analgesic uses of, 355 anti-inflammatory uses of, 344 description of, 269t, 302, 662-664 dosage of, 663 Wildcrafting, 222, 253 Willow bark, 205t, 343, 664-666 Wind-Cold, 56t Wind-Damp, 57t Wind-Heat, 56t Winter cherry See Withania spp Wintergreen, 205t Wintergreen oil, 191t, 192 Witch hazel, 205t, 383, 386, 666668 Withania spp W ashwagandha, 74t W somnifera adrenal effects of, 320 anxiolytic uses of, 350-351 cancer uses of, 297-299, 299 cardiopulmonary effects, 476477 central nervous system effects, 476 chemoprotective activity of, 476 description of, 68, 71, 74t, 81t, 315, 354, 475-478 dosage of, 477 drug interactions, 196t hematologic and immunologic disorders treated with, 292, 476 713 Withania spp.—cont’d W somnifera—cont’d immune-mediated hemolytic anemia treated with, 70 immunomodulatory effects of, 476 lymphoma/lymphosarcoma treated with, 305 nervine uses of, 348, 358 thyroid gland effects of, 323 Wogonin, 482f Wolfberry, 215 Wolf’s fruit, World Health Organization, 18, 262 Wormseed, 191t Wormwood anthelminthic uses of, 328 drug interactions, 205t fibrosarcoma treated with, 303 safety of, 185 Shen Nong’s writings about, 34 synergistic properties of, toxicity of, 191t Wound healing, 387-388 Wushier bingfang, 122 X Xie Qi, 54, 54t Xylem, 144 Y Yang, 51-52, 61 Yangonin, 586f Yarrow description of, 243, 252 diuretic effects of, 346 Yellow dock, 316, 345, 668-669 Yellow gentiana See Picrorrhiza kurroa Yellow oleander, 205t Yerba mansa, 269t Yerba santa, 269t, 373, 669-670 Yi mu cao, 205t Yin, 52, 61 Yin yang huo, 205t Ying Qi, 54t Yohimbe, 189, 205t Yoko, 205t Yuan Qi, 54t Yucca (Yucca schidigera), 344, 670671 Yunnan Pai Yao, 294, 384 Z Zang-Fu Qi, 54t Zanthoxylum americanum, 311, 346, 628-629 Zea mays, 376-377, 379, 524-525 Zheng Qi, 54t Zhong Qi, 54t 714 INDEX Zingiber officinale androgenic effects of, 321 antidiabetic effects of, 322 antiemetic uses of, 328-329, 560 antifilarial activity of, 560 anti-inflammatory uses of, 344 anxiolytic uses of, 351 Ayurvedic uses of, 69t, 74t, 81t Zingiber officinale—cont’d cancer uses of, 301 constituents of, 74t description of, 559-562 dosage of, 561 drug interactions, 199t heartworms treated with, 313 oral tumors treated with, 304 Zizyphus, 24t, 348, 671-672 Zonal geranium, 384 Zong Qi, 54t Zoopharmacognosy definition of, 17 geophagy, 10-11 nature’s larder, 7-13 self-regulation, Zootherapy, 269-270

Ngày đăng: 24/04/2023, 08:36

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan