1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Api report 82 45 1984 scan (american petroleum institute)

58 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Final Report AMERICANPETROLEUM INSTITUTE PRAC PROJECT 82-45 RHEOLOGICAL CHARACTERIZATION OF FRACTURING J?LUIDS Robert K Prud'homme Department of Chemical E n g i n e e r i n g Princeton University Princeton, New Jersey 08544 STD.API/PETRO 82-45-ENGL 2 0577b81, b = OUTLINE I INTRODUCTION 11 SUMMARY OF CONCLUSIONS I I1 RHEOLOGICAL MEASUREMENTS D y n a m i c O s c i l l a t o r y Measurements A, B Steady She+IV Measurements EQUIPMENT Ftheometrics Inc System IV Rheometer Rheametrics Inc P r e s s u r e Rheometer C Impingement Mixing Device D C a p i l l a r y Viscometer A B V MATERIALS AND PREPARATION VI RESULTS AND DISCUSSION A Chemical Effects Hydration of Guar Molecules Order of A d d i t i o n Aging of Titanate S o l u t i o n DiketoneAddition Isopropanol Addition Temperature B Rheology of Guar Gels Dynamic O s c i l l a t o r y Measurements S t e a d y S h e a r Measurements VII KINETIC THEORY MODELING VIII.RECOMMENDATIONS FOR FUTURE RESEARCH IX RECOMMENDATIONS FOR INSTRUMENTATION APPENDICES A Wall S l i p Corrections f o r Coaxial C y l i n d e r Viscometer B ImpingementMixerSchematicand Parts L i s t C C a p i l l a r y Viscometer S c h e m a t i c a n d P a r t s L i s t D Summary of Experiments Performed,prepared by D r John Cameron, API S t e e r i n g Committee Vice-chairman ~~~~~ STD.API/PETRO ~ ~~ ~ 82-45-ENGL ~~~~~ ~~ ~ ~~ ~~ O73229U 7 b 8 2 E I ,INTROD.$TION This is t h e f i n a l report on our research conducted under the American Petroleum I n s t i t u t e ' s PRAC Project 82-45 e n t i t l e d" R h e o l o g i c a lC h a r a c t e r i z a t i o n of Fracturing Fluids" The project was i n i t i a t e d by the American Petroleum I n s t i t u t e (-1) because: 1) the expenseofhydraulicfracturing makes it d e s i r a b l e t o u n d e r s t a n d the process f u l l y , i n c l u d i n g the rheology of t h e f r a c t u r i n gf l u i d , t o ensure a s u c c e s s f u lf r a c t u r i n go p e r a t i o n , and ) during a round-robin t e s t i n g program by s e v e r a ll a b o r a t o r i e st h ev i s c o s i t i e s reported by t h ep a r t i c i p a n t sf o ri d e n t i c a lg e lf o r m u l a t i o n sv a r i e d by 1000% The purpose of t h i s report t o t o provide a workingguide t o rheology of W e first provide, i n S e c t i o n 11, a summary of t h e s i g n i f i c a n t r e s u l t s andconclusions from the f i r s t y e a r of t h i s i n v e s t i g a t i o n I n S e c t i o n I11 dynamic o s c i l l a t o r y shear measurements,which are used t o study guar rheologyandguargelstructure, are described Dynamic o s c i l l a t o r ys h e a r measurementscan be d i r e c t l y related t o t h e number of network c r o s s l i n k s Thesemeasurementsand their i n t e r p r e t a t i o n are d i s c u s s e d i n d e t a i l , s i n c e t h e y are probably less f a m i l i a r t o r e s e a r c h e r i n t h e o i l production research area t h a n are steadyshearmeasurements.InSection I V we describe the rheologic a l instrumentsused i n this s t u d y I n S e c t i o n V t h e p r e p a r a t i o n of guar samples is d e t a i l e d The compositionofthe model g u a rg e lu s e di nt h i ss t u d y w a s s p e c i f i e d by the API S t e e r i n g Committee Our observations on t h ef a c t o r s c o n t r o l l i n g gel rheology,includingchemicaleffects, sample p r e p a r a t i o n In Section V I a e f f e c t s , and flow history effects are p r e s e n t e d i n S e c t i o n model t h a t d e s c r i b e s t h e rheology o fg e l l i n gf l u i d s i s described The model i s based on the temporarynetwork theories used t o describetherheology of polymer melts and s o l u t i o n s To t h i st h e o r y we have incorporated the chem i c a lk i n e t i c so f metal i o na d s o r p t i o no n t o the guar polymer backboneand subsequent polymer-polymer c r o s s l i n k i n g I nt h ef i n a ls e c t i o n s recommendations for rheological instrumentation and for future research are presented guar gels VI A t the q u a r t e r l ym e e t i n g sw i t ht h e A P I Committee several hundred pages of experimental data were d a t a are n o it n c l u d e di n this report Rather the drawn from t h o sdea t a are p r e s e n t eadl o nwgi t h supportthoseconclusions The o r i g i n a l data are on tions department andcan be obtained through the API work o v e r s e e i n gt h i s d i s t r i b u t e d A l l of that important conclusions t hr e l e v a nd ta t a that f i l e w i t h t h e API p u b l i c a - - I I SUMMARY OF CONCLUSIONS t o study Dynamic o s c i l l a t o r y a n d s t e a d y s h e a r measurements havebeenused t h e r h e o l o g y of guar gels Dynamic o s c i l l a t o r y measurementshavebeenused to s t u d y t h e slow hydration of guar polymer and t h e e f f e c t s of chemical composition andmixingon guar g e l s t r u c t u r e S t e a d y s h e a r measurementshavebeenused to Major c o n c l u s i o n s ,p r e s e n t e di nt h e body of t h i s s i m u l a t ep r o c e s sc o n d i t i o n s report, includethefollowing: R e s u l t s from polymer k i n e t i ct h e o r yc a n be used t o relate the measured storage modulus, G ' , t o t h e c r o s s l i n k d e n s i t y i n t h e g u a r gel Aged t i t a n a t es o l u t i o n sp r o d u c eg e l sw i t h iower values of G I ; and t h e r e f o r e , dynamic o s c i l l a t o r y measurementscan be used t o q u a n t i f y titanate reactivity S T D - A P I I P E T R O 82-45-ENGL 2 05'77b83 b ' Adding d i k e t o n e( t h a t is, a c e t y l a c e t o n e ) to modify the rate of r e a c t i o n down t h e r e a c t i o n , b u t it also p r e v e n t s t h e gel from does not just slow c r o s s l i n k i n g t o t h e same e x t e n t a t room temperature as g e l s w i t h o u t added acetylacetone Mixing i s shown to p l a y a crucial role i n t h e development of gel s t r u c t u r e Poor mixing appears t o producemicroscopically inhomogeneous gel networks that have h i g h e r l e v e l s of e l a s t i c i t y t h a n homogeneous gels To Produceintimately&xedfluids mixing device - we havedeveloped a novelimpingement Measurementsof the s t e a d ys h e a rv i s c o s i t y of gels i n d i c a t et h a t wall s l i p is occurring However, c o n v e n t i o n a lr h e o l o g i c a lt e c h n i q u e sf o r c a l c u l a t i n g wall s l i p velocities h a v e g i v e n c o n t r a d i c t o r y r e s u l t s There i s a need f o r direct measurementsof v e l o c i t y f i e l d s i n s h e a r flow t o c l a r i f y t h e mechanism of wall s l i p I n t h e next y e a r we w i l l be conducting laser doppler measurements t o address t h i s problem Under q u i e s c e n tc o n d i t i o n s dynamic o s c i l l a t o r y measurements show t h a t the guar continues to crosslink over a time scale of about 15 minutes The s t e a d y s h e a r measurements show t h a t s h e a r i n c r e a s e s the rate of reaction A novel network theorycoupledwithchemicalreactionkinetics is proposed; material f u n c t i o n sc a n be expressed a n a l y t i c a l l y This model p r o v i d e s a framework f o r modelingand p r e d i c t i n g r h e o l o g i c a l p r o p e r t i e s of reacting g e l s 111 RHEOLOGICAL MEASUREMENTS A Dynamic O s c i l l a t o r y Measurements Dynamic o s c i l l a t o r y s h e a r e x p e r i m e n t s , whichmeasure the l i n e a r viscoe l a s t i c response of materials, are acknowledged t o be t h e most valuable probes of g e l o r network s t r u c t u r e Though s t e a d ys h e a r measurements are necessary t o d u p l i c a t e process c o n d i t i o n s , the o s c i l l a t o r y measurementsgive more i n s i g h t s t e a d y s h e a r measurements When i n t o the properties o f t h e g e l t h a n i n t e r p r e t e d u s i n g classical network theory, linear viscoelastic measurementscan be used t o d e t e r m i n e t h e k i n e t i c s of g e l f o r m a t i o n , t h e c r o s s l i n k d e n s i t y of a gel, or t h e s h e a r d e g r a d a t i o n o f g e l s t r u c t u r e The g e l a t i o n of p o l y v i n y l alcoh o l andgelatingelshasbeenstudied by a number of r e s e a r c h e r s ( , , ) , and a t P r i n c e t o n we have used these measurements t o study polyacrylamide gels used as p e r m e a b i l i t y c o n t r o l a g e n t s i n enhanced o i l r e c o v e r y ( , s ) Foranintroduct i o n t o t h e f i e l d of l i n e a r v i s c o e l a s t i c i t y t h e reader i s r e f e r r e d t o t h e t e x t by Ferry ( ) In a linear visco-elastic y ( t ) , is imposed on a sample, measurementan o s c i l l a t o r y shear s t r a i n , STD.API/PETRO - - E N G L PI 2 0577bA4 h T m where Yo is t h e maximum value of t h e s t r a i n Experimentally this is accomplished by placing a sample i n a coneand p l a t e in a geometry, a parallel plate geometry, o r between concentric cylinders Couettegeometry,andthenimposing a t o r s i o n a l o s c i l l a t i o n on one plate, cone, o r cylinder The r e s u l t i n g stress on t h e s t a t i o n a r y plate, cone, o r c y l i n d e r w i l l oscillate with the imposed frequency w, b u t will be o u t of phase with the t o components, f o r c i n g o s c i l l a t i o n The measured stress can be f a c t o r e d i n t o w 90 degrees out of phase with the one i n phase with the displacepent and one displacement: The in-phase stress d e f i n e s a s t o r a g e modulus G I t h a t gives information about t h e e l a s t i c i t y andnetwork structure, whereas the out-of-phase component d e f i n e s a loss modulus G" t h a t gives information about the viscous or dissipative prop e r t i e s of t h e f l u i d The frequency and s t r a i n dependenceof t h e s t o r a g e and loss moduli, G I and G" respectively,provideinformationaboutthe s t a t e of the f l u i d For a n uncrosslinked guar solution both G I and G" decrease with decreasingfrequency, w i t h G" l y i n g above G I As a g e l c r o s s l i n k s G I rises u n t i l i t is horizontal independentoffrequency As an example, t h i s p r o g r e s s i o n i s shown i n Fig f o r t h e g e l a t i o n of a p o l y s t y r e n e / c a r b o n d i s u l f i d e s o l u t i o n as temperature is decreased As we will show i n S e c t i o n V I , G I can be monitored as the amplitude of t h e s t r a i n deformation i s i n c r e a s e d I f s t r a i n d e s t r o y s t h e network s t r u c t u r e , t h e n G I will decrease with i n c r e a s i n g s t r a i n Classical network theory ( ) shows t h a t G ' , i n t h e low frequencyregion i s p r o p o r t i o n a l t o t h e number d e n s i t y of where G I i s independentoffrequency, crosslinks in the gel: G' = gnkT + Ge (3) where g i s a constant of o r d e r one, n is t h e number density of c r o s s l i n k s , k is t h e Boltzmann constant, T is the absolute temperature, and Ge is a contribution t o the modulusfram molecularentanglements.Foraqueous gels G e i s verysmall It i s p o s s i b l e t o f o l l o w the k i n e t i c s of gel formation by t a k i n g t h e time deriv a t i v e of 3: Eq dn dt dG' c= kT d t Likewise, t h e d e s t r u c t i o n o f gel s t r u c t u r e by shear can be monitored by measuring G I a f t e r exposure t o steady shear The r e s u l t s c a n be i n t e r p r e t e d i n terms of t h e breakdown i n t h e number of c r o s s l i n k p o i n t s S T D - A P I I P E T R O 82-45-ENGL c1732290 7 L 5 R rad/sec w rad/sec Fig 1a Fig 1b rad/sec o rad/sec Fig 1c , Fig.1a-d : - - Fig 1d - Storage ((3') and loss (G") moduli as afunction of frequencyof a 8.5 wt % polystyrene (900,000molecular weight) in carbon disulfide solution at temperature as indicated in each figureandrun at 3% strain.(Clark, et.al., Polym Preprintrs between parallel plates 24,87( 1983)) IV ,EQUIPMENT A Rheometrics System I V Rheometer: Most of the measurements reported here were conducted on our Rheometrics Inc System I V rheometer (Rheometrics, Inc.,Piscataway, NJ) This state-of-the-art instrument shown i n Fig has s e v e r a l motor and transducer options The instrument i s f u l l y automatedand a l l data a c q u i s i t i o n and manipuFor measurements w i t h the FluidsTransducer l a t i o n i s undercomputercontrol a c i r c u l a t i n g water bath is aiailable with a temperature range from -2OOC t o 8OoC For most of the g u a r s o l u t i o n measurements a Fluids Transducer w i t h a g-cm maximum torque and 100 g maximum normal force was used This F l u i d s Transducer allows s t e a d y shear measuremements of f l u i d v i s c o s i t y , dynamic w i t h a some modification t o t h e d r i v e u n i t , o s c i l l a t o r y s h e a r measurements,and, s t e a d y shear followed by o s c i l l a t o r y shear For polymer s o l u t i o n s and g e l s t h e be made i s range of frequencies and shear rates over whichmeasurementscan usually determined by t h e minimum torque range of the t r a n s d u c e r ( a b o u t 1/1000 t o 1/500 of the maximum torque).Frequencies from 0.01 t o 100 rad/$ a r e accessible and s t e a d y s h e a r rates from 0.01 t o 10,000 s-l The F l u i d s with cone-and-plate, parallel plate, or Couette Transducerscanberun geometries For dynamic o s c i l l a t o r y measurements on g u a r g e l s t h e g-cm t r a n s ducer i s ideal; however, the torque range of this t r a n s d u c e r i s quicklyexceeded i f s t e a d y shear measurements are attempted on gels Therefore, f o r the bulk of t h e gel measurements a Fluids Transducer with a 100 g-cm torque range was used For our System I V rheometer we have a high temperature and pressure c e l l t h a t allows measurement of f l u i d v i s c o s i t y anddynamicmoduliunder p r e s s u r e s t o p s i and temperatures t o 300'C However we generally found it more convenient to perform high temperature measurements on a Rheometrics P r e s s u r e Rheometer, described below, rather then on ourSystem I V B RheometricsInc.Pressure Rheometer: Measurements of gel properties a t elevated temperatures were performed on a Rheometrics Pressure Rheometer located a t Rheometrics Inc laboratories i n Piscataway, NJ The i n s t r u m e n t has a unique sealed sample chamber w i t h a Couette dynamic o s c i l l a t o r y shear measurements over the same geometry.Steadyshearand rangeof shear rates and frequencies spanned by the System I V Fluids Transducer are possible The t o r q u e s e n s i t i v i t y of the P r e s s u r e Rheometer corresponds approximately t o t h a t of the 100 g-cm FluidsTransducer It i s possible t o seal and pressurize the sample cell t o run samples a t temperatures above the normal b o i l i n g p o i n t of water It is somewhat awkward to load and mount the sample cup the process takes 2-3 minutes.Modifications t o allow o n - l i n e i n t r o d u c t i o n of the sample t o the cup have b e e n s u g g e s t e d t o the manufacturer Fig.2 System IV Rheometer STD.API/PETRO B2-L.I5-ENGL C ImpingementMixing m 0732270 7 b B d SS Device: The homogeneity achieved d u r i n g the mixingof the guar and t i t a n a t e s o l u t i o n s and s h e a r h i s t o r y of the f l u i d as it crosslinks determines the g e l properties The recommended procedure of mixing the g u a r s o l u t i o n a n d t i t a n a t e s o l u t i o n i n a blender and then t r a n s f e r r i n g the preformed gel t o t h e v i s c o m e t e r will be discussed below To circumvent this yields irreproducible results This problem, animpingement mixing d e v i c e was f a b r i c a t e d t h a t i n t i m a t e l y mixes the w t o streams and i n j e c t s t h e m d i r e c t l y i n t o the rheometer t e s t c e l l (Fig ) The d e v i c e c o n s i s t s of a s t a i n l e s s ' steel double acting pneumatic cylinder that is mechanicallycoupled t o a-microliter glass syringe The pneumatic cylinder i s p r e s s u r i z e d w i t h n i t r o g e n at 200 psi t o f o r c e g u a r s o l u t i o n i n the cylinder and t i t a n a t e s o l u t i o n i n the syringe through an impingementmixinghead; the mixture then flows through a packed bed mixing section The packed bed c o n s i s t s of t h r e e i n c h e s of a 1/4" OD s t a i n l e s s steel tube packedwith 24-32 mesh (0.71 - 0.50 mm) sand.During i n j e c t i o n through the sandpack the Reynolds number is aboutone, based on a mean h y d r a u l i c radius f o r the sandpackand t h e v i s c o s i t y of t h e uncrosslinkedguar The c o n n e c t i o n s i n the device are made with 1/8" t e f l o n tubing A three-way valve is used t o d i v e r t f l u i d either to waste or t o t h e rheometer cell The f l u i d fhws d i r e c t l y i n t o the rheometer c e l l and the dynamic o s c i l l a t o r y measurement can be i n i t i a t e d e v e n b e f o r e t h e f l u i d f i l l s the gap The t o t a l time between the i n i t i a l c o n t a c t i n g of the guar and metal i o n s o l u t i o n s and t h e start of a dynamic o s c i l l a t o r y e x p e r i m e n t is on t h e order of t o seconds.For a s t e a d y shear experiment the tube connecting the impingement cup must be disconnected so that time t o i n i t i a t e a n mixer and the rheometer experiment i s less t h a n minute The schematicand parts l i s t f o r the impingement mixer is g i v e n i n Appendix D C a p i l l a r y Viscometer: A p r e l i m i n a r y capillary viscometer has been designed and assembled The s h e a r h i s t o r y d e p e n d e n c e of these gels, as shown i n S e c t i o n VI, convincedus t h a t r a t h e r t h a n making a c i r c u l a t i n g loop using a pump, a better d e s i g n f o r o u r v e r y small scale l a b work would be a l o n g c a p i l l a r y i n which the f l u i d i s pumped backand f o r t h I n t h i s way the f l u i d is under constant shear (excluding the s h o r t times needed t o reverse t h e d i r e c t i o n of t h e f l o w ) The viscometer is b e i n g c o n t r o l l e d by a n IBM p e r s o n a l computerwith a Tecmar Inc A/D and D/A board F u r t h e r d e t a i l s and r e s u l t s on t h i s d e v i c e will be p r e s e n t e d i n f u t u r e p r o g r e s sr e p o r t su n d e rn e x ty e a r ' sr e s e a r c hp r o j e c t The schematicofthe c a p i l l a r y v i s c o m e t e r i s given i n Appendix C V MATERIALS PREPARATION The e x a c t f o r m u l a t i o n of the guar g e l was s p e c i f i e d by the API Committee monitoring this project Special l o t s ofhydroxypropylguarandTyzor AA t i t a n a t e were r e s e r v e d f o r this s t u d y by Celaneseand DuPont, r e s p e c t i v e l y The following formulation was used t o produce a 40 lb/Mgal g e l : 500 m l d i s t i l l e d water 2.4 g hydroxypropyl guar (Celanese SCN 9574) STD.API/PETRO - - E N G L 1111 2 0 7 b 8 double-actin Pneumatic reservoir of microliter syringe reservoir of titanate solution , -load ing - injection STD.API/PETRO 82-45-ENGL Is 2 00 7 32 R : c * g e l s i n t o t h e sample Thisarrangement is, Rheometrics Pressure data a c q u i s i t i o n and , chamber through the a i r l i n e used t o p r e s s u r i z e &e'system however, awkward.Compared t o t h e Pam viscometer, t h e Rheometer i s more s e n s i t i v e and more accurate, has*modern display, and allows dynamic o s c i l l a t o r y measurements ~ i c ACKNOWLEDC;MENTS W e wish t o acknowledge t h e f i n a n c i a l a s s i s t a n c e p r o v i d e d by t h e American Petroleum Institute The work was conducted by Alice Chu, a p o s t - d o c t o r a l r e s e a r c h a s s o c i a t e , and Jeffrey'Kramer, a d o c t o r a l s t u d e n t a t Princeton University.Specialthanks go to Dr RalphVeatch, PRAC Committee Chairman, f o r h i s encouragementand d i r e c t i o n i n administrative and t e c h n i c a l matters, and to D r John Cameron, PRAC Committee Vice-Chairman, f o r h i s c a r e f u l c r i t i q u e of experiments and drafts of t h i s f i n a l r e p o r t Dr Cameron's c o n t r i b u t i o n i n f i n d i n g the e r r o r i n the o r i g i n a l m l l s l i p c a l c u l a t i o n s (Appendix A ) i s acknowledged Also, I want t o thank the PRAC Committee members for their p a t i e n c ei nt e a c h i n g a rheologistabout the a r t , science, and mystery of hydraulic fracturing 24 ._ REFEREKES - ~ Chem., i,1 J D Ferry, Adv Protein '2 R '" - , Roscoe, Rheologica 19, 737980) (1 - Personalcommunication Jeffersontown, ICY Personalcommunication Laboratory,Deepwater, Personalcommunication Point, NY G .,L -'I (submitted) F Halverson, SOC Pet W KO Graessley,Macromolecules, ( 981 1' J D Ferry, Viscoelastic P r o p e r t i e s of Polymers,3rd Sons, NY, 1980 S Pearsonand ' R D - ( 948) J T Uhl, R K Prud'bmme, Macromolecules 10 A c t a , E, 522 KO Prud'homme, J; To Uhl, J P Poinsatte,and Engrs J., 804-808, Oct 11 - _ K te Jigen Nuis, Colloid Polymer Science, ed., JohnWileyand 13, 1001, L (1980) from D r William Stivers, Celanese Chemical Co., from D r Donald Putzig, du PontInc.,Jackson HiT, frm Dr James Steinmutz,Kay-Fries,Inc.,Stony RummO, O i l and Gas J., Sep 13, 84 ( 982) 12 P Kolodziej, C W Macosko, and W ( 982) E Ranz, P o l p Eng and Sci., 13 C Tucker, 111, and N P Suh, Polym Eng and Sci., 14 R B Bird and P J Carreau, Chem Engr Sci., 15 R 16 P J Carreau,Trans 17 A 18 A S Lodge, Rheol A c t a 19 R 20, 875(1980) g, 427-434 (1968) z, 388 - B B i r d , Hassager, R C Armstrongand C F Curtiss, Dynamics of Polymeric Liquids, V o l John Wiley: New York (1 977) , 15 Ch Kaye, B r i t J Apl I Tannerand J M Soc R h e O l l6, 99-127 Phys., E, 803-806 ,;zI 379-392 Sinnmons, Chem (1972) (1966) (1968) Engr Sci., 22, 1803-1815 (1967) S T D - A P I / P E T R O 82-45-ENLL E 2 00 7 - "48 M ApPE,NDIX A WALL SLIP CORRECTIONS FOR THE COAXIAL CYLINDER VISCOMETER Ann S Yoshimura Robert K Prud'homme Department of Chemical Engineering Princeton University Princeton, New J e r s e y 08544 Rheological measurementson gels,concentratedsuspensions,and foams are o f t e n confounded by s l i p a t s o l i d b o u n d a r i e s with t h e r e s u l t t h a t t h e f l o w f i e l d , or kinematics, is unknown necessary t o correct f o r slip a t b o u n d a r i e s I n t h i s n o t e sis of Couetteflowbetweencoaxialcylinders t o Couette geometries on w it is To i n t e r p r e te x p e r i m e n t a ld a t a we p r e s e n t t h e a n a l y - w i t h wall s l i p we show how t o c a l c u l a t e t h e t o t a l From experiments wall s l i p v e l o c i t y , and, f o r t h e case of small g a p s , t h e f l u i d v i s c o s i t y The coaxial Couettegeometry i s held stationary, the cup on the bob i s measured endof t o be considered i s shown i n Fig is rotated a t angularvelocity A l i s t of nomenclatureand The bob a, and t h e t o r q u e T symbols can be found a t t h e the t e x t I t can be shown from the e-equation given by of motion t h a t t h e s h e a r stress is The r a t e of s t r a i n i n a c y l i n d r i c a l c o o r d i n a t e system i s defined by For a f l u i d a t s t e a d y s t a t e the rate of s t r a i n is a unique function of the imposed stress; t h e r e f o r e 431,2 can be w r i t t e n n can be used t o changeindependentvariables i n Eqn from r t o rre, which can then be i n t e g r a t e d from t h e bob ( r = R) t o t h e cup (r = KR) t o y i e l d , The s l i p v e l o c i t i e s Sb and Sc are defined as the difference between the v e l o c i t y of the s o l i d wall and the f l u i d v e l o c i t y a t the wall; 'b el r =R I (7) and are assumed t o depend only on the wall shear stresses Tb and be noted that the slip velocities Q I t should a t the cup and bob surfaces are not equal S T D - A P I I P E T R O - - E N G L sls 2 0577727 A10 Appendix A Page s i n c e , as can be s e e n from theseexpressionswith4n Eqn ( l ) , the stresses are n o t equal Combining ( ) yields The f i r s t term on the r i g h t i n b r a c k e t s r e p r e s e n t s the s l i p c o n t r i b u t i o n t o t h e a n g u l a r v e l o c i t y p, while t h e i n t e g r a l term accounts for deformation liquid of the The s l i p v e l o c i t i e s and t r u e r a t e of s t r a i n i n the f l u i d c a n be determined from experimental data i n the following manner C a l c u l a t i o n of S l i p Velocities A I - The s l i p tem can be e v a l u a t e d by u s i n g t w o Couette tools of d i f f e r e n t R b u t w i t h the same if the torques K For bobs of r a d i i R1 and R2, and of l e n g t h s L1 and L2, are chosensuch that *l -= T2 Ll Rl I L2R2 t h e n t h e same shear stress will be producedon fc Since K i s t h e same for both devices, From Eqn (11, ( 10 ) the s h e a r stresses a t t h e cups are a l s o equal % Applying n each bob ( ) t o each device g i v e s S T D - A P I / P E T R O 82-qS-ENGL H 0732290 057772d 757 M Appendix A Since 'bl - Tb2 e and (1 3) fcl = 'e2 ? i t follows that b ' = 'b2 scl - sc2 r and (1 ) I Therefore, Eqns ( 1 ) and (12) can &,subtracted From n (15) the total t o yield slip velocity can be calculated then be inserted i n t o e i t h e r Eqn ( 1 ) angular velocity experienced by the liquid, This expression can or ( ) t o give the actual (corrected) S T D A P I / P E T R O 82-45-ENGL m 2 0 7 7 b73 Appendix Page B A Calculation of FluidViscosity I _ The determination of the corrected angular velocity from measurements with w t o s e t s of geometrically similar Couette coaxial cylindaers new r e s u l t The d e r i v a t i o n makes no assumptionaboutwhether thecylinders i s "narrow" Ci.e., t i o n of f l u i d v i s c o s i t y , K 1) o r "wide" ( i e , ICI 16) is a the gapbetween > 1) The calcula- however, from measured torque and corrected angular v e l o c i t y i s accomplishedconvenientlyonly approximationscanbe K (i.e., made ( ) when e i t h e r "narrow" o r "wide" gap For the case of "wide" gapsKrieger (2) has resented a series s o l u t i o n t h a t converges rapidly so t h a t the "narrow"gapapproxima- Most Couette viscometers are designed t i o n i s valid, For a d i f f e r e n c e i n r a d i i between the cupand t h e bob of 5%, t h e stress across the gap will deviate from i t s mean v a l u e by t 5% ofaccuracy i s acceptable, then the If t h i s l e v e l stress can be considered approximately constant across the gap, and the viscosity and r a t e of s t r a i n can be calculated from (3,l): I References &ch.mics of Schowalter, W R., 1978, pp.94-96 Krieger, I M Bird, R B., W E Stewart, and E N Lightfoot,Transport Wiley and Sons, NY, 1960, p 95 , Trans Non-Newtonian F.luid.s, Pergamon Press, NYt SOC Rheol, E, (1968) Phenomena, John , :- A"; i r r8 radial, tangential coordinates T torque on bob EF.21 Tre re-component of the stress tensor(shear Tb shear s t r e s s a t bob =C shear stress a t cup rate of s t r a n It"I Y , bob radius t g l R ratio of cup radius to K , L bob radius length of bob [ aI , , respectively stress) [F/a2] STD.API/PETRO - - E N G L APPENDIX B An impingementmixingdevice was c o n s t r u c t e d t o mix guar and t i t a n a t e s o l u t i o n s s i n c e mixing i n a blenderproduced gels with i n c o n s i s t e n t properties The concept for the mixing device comes fromimpingementmixersused in reaction i n j e c t i o n moldingofpolyurethane A schematic of the mixer is attached and a parts list i s included Mixing occurs as t h e g u a r a n d t i t a n a t e s o l u t i o n s impinge on e a c h o t h e r i n a three-way tee f i t t i n g , and further mixing occurs as the mixed solution flows through a 3" s e c t i o n of1/4* OD s t a i n l e s s steel tubing f i l l e d w i t h 24-32mesh (0.71 0.50 mm) sand The guar and t i t a n a t e are loaded steel h y d r a u l i c c y l i n d e r and microliter syringe, i n t o a double-acting, stainless r e s p e c t i v e l y , by p o s i t i o n i n g a six-port chromatographyvalve so that s o l u t i o n s i s sucked i n t o t h e g u a r can be drawn i n t o t h e cylilider andsyringe.Fluid c y l i n d e r b u t is i n j e c t e d i n t o t h e t i t a n a t e s y r i n g e u s i n g a larger 10 ml s y r i n g e as t h e t i t a n a t e " r e s e r v o i r * shown i n t h e f i g u r e The p i s t o n r o d of the double a c t i n g h y d r a u l i c c y l i n d e r i s mechanically coupled t o a rod that d r i v e s t h e The cross-sections of thecylinder(17/16*) and m i c r o l i t e rs y r i n g ep l u n g e r s y r i n g e (250 m i c r o l i t e r volume) determine the r a t i o of guar t o t i t a n a t e s o l u tions - Afterloading,the6-portvalve i s r o t a t e dt ot h e" i n j e c t "p o s i t i o n Mixing i s opened to p r e s s u r i z e t h e backof the double begins when an on/off valve a c t i n g c y l i n d e r w i t h 200 psi nitrogen The f i r s t few milliliters of mixed g e l are discarded by d i r e c t i n g t h e f l o w t o a waste v e s s e l u s i n g a three-position valve, and then the flow is directed i n t o the stem of a special cup we have c o n s t r u c t e d f o r o u r Sys tern Iv Rheometer A f t e r a n i n j e c t i o n , the l i n e s andsand-pa& are flushed w i t h HC1 s o l u t i o n , t o remove r e s i d u a l gel Nitrogengas is used t o dry the l i n e s andsand-pack before the n e x t i n j e c t i o n D I water, and thenmethanol Parts L i s t -1 Bimba double acting, t u r i n g , Monee, IL) stai2less-steel c y l i n d e r Model D4173A-6 (Bimba ManufacThis c y l i n d e r may be disassembled f o r cleaning Hamilton m i c r o l i t e r Gas-TightSyringe, Inc., Reno, N V ) C a t No 1725-TEFLL (Hamilton Ekcton-Dickinsonthree-way Rutherford, NJ.) Teflonchromatographytubing:1/8" OD X 2.4 mm I D , C a t No x 1.0 mm I D , C a t No 3132 (Alltech, Deerfield, I L ) A l l t e c hp l a s t i cl i q u i d Six-portvalve screw-type stopcock(Becton-Dickinson,Inc., 3134; 1/16" OD chromatography f i t t i n g s similar t o Valco (ValcoInstruments Co., Houston, TX) FIG 61 load ing injection hpingement mixing "device FIG €32 U cy I mder IO" - PI STD.API/PETRO 82-95-ENGL 0'7322700577734 TSU W i AF'PE.NDIX C Continuous Shear Flow Apparatus _ Theory of Operation showing t h e r e v e r s a l of flow The schematic of t h e c a p i l l a r y v i s c o m e t e r d i r e c t i o n i s shown i n Fig C l The g u a rs o l u t i o na n dc r o s s - l i n k i n ga g e n t are mixed and i n j e c t e d i n t o t h e flow system by a m i x i n g d e v i c e d e s c r i b e d ' i n Appendix B N o n - r e a c t i v ed r i v i n gf l u i d i s s u p p l i e d from a h i g h p r e s s u r e l i q u i d r e s e r v o i r is c o n t r o l l e d by t h r e e l o c a t e d a t t h e t o p of t h e system The d i r e c t i o n offlow pneumaticallydrivencomputer-controlledvalves The v a l v e s are switched, and t h e d i r e c t i o n of flow r e v e r s e d when a s p e c i f i e d amount of d r i v i n g f l u i d h a s been c o l l e c t e di nt h ee l e c t r o n i cb a l a n c ea p p a r a t u s The b a l a n c e i n t e r f a c e s with t h e RS-232 l i n k The amount of d r i v i n g f l u i d c o l l e c t e d i s chocomputerthroughan t e s t i n g s e c t i o n andunder s e n so t h a t t h e c r o s s l i n k e d gel i s k e p t i n t h e c e n t e r s t e a d ys h e a rc o n d i t i o n s C a p i l l a r yp r e s s u r ed r o p s are determined by t h r e e pressure t r a n s d u c e r s and a r e r e c o r d e d by thecomputingsystemthroughan A/D converter Specifications I D tubing: 1/32" C a p i l l a r y Length(Middle D r i v i n gP r e s s u r e : testingsection): 200 p s i Shear Rate a t Wall: 1500 s-' F l u i d Flow Rate: 0.0737 cm/s PressureTransducers:Celesco Model P7D V a l v e s Switching Time: approx 15 m s ComputingSys tern: IBM PC 910 cm LEGEIJD : PMEUMATIC COMPUTER COI?TROLLED VALBE PRESSURETRANSDUCERS -FELECTRICAL L U I D FLOW e - + +FLUID SIGIJALS NOT FLOWING = , ' : I * S T D - A P I / P E T R O 82-45-ENGL R 0732270 057773b 823 U APPENDIX D P r e p a r e d by D r JohnCaneron PRAC Committee Vice- Chairman, Dec Outline Summary of PRAC Project82-45 Research During 1983 I Measurement of Viscous and Elastic Properties at Low Shear Rates A Hydration and Strticture of Guar solutions@ 25 C using the Systems IV Mechanical spectrometer steady shear sweeps (2/28/83) strain sweeps (2/28/83) frequency sweeps (2/28/83) effect of mixing sequence viaG' from strain and frequency sweeps (6/12/83) effect of isopropanol via G' from strain and frequency sweeps (6/12/83) B Properties and structure of 0.4% Tyzor TE gel @ 25 C using the I Systems IV Mechanical Spectrometer (2/28/83) strain sweep frequency sweep temperature sweep from 25 to 100 C gelation time @ 25 C step shear rate (1, 10, 100, and l/s) C Properties and structure of -04% Tyzor AA gel @ 27 C using the Systems IV Mechanical Spectrometer or the Rheometrics Pressure Rheometer (RPR) gelation time @ 27 C via G' by varying guar and TyzorAA concentration (6/12/83 Systems IV) effect of mixing sequence via G' from strain and frequency -sweeps (6/12/83) and (9/5/83 Systems IV) effect of Tyzor AA aging via G from dynamic time sweep Systems IV) (6/12/83 effect of diketone via G' from dynamic time sweepat various diketone concentrations (6/12/83 Systems IV) effects of shear viaG' from alternating steady shear and oscillatory testing (6/12/83 RPR) and (9/5/83 Systems IV) Equilibrium viscosity tests via steady shear tests using fresh samples at each shear rate; two cone angles used (9/5/83 Systems IV) Viscosity of guar solutions at high shear rates using parallel plate geometry'(procedure using rotational viscometer being written up) (9/5/83 Systems IV ? ) (results of this work has not yet been presented to the API TAC) - D Construction of a pneumatic syringe for the continuous injection of guar and cross-linker during rheometer loading (9/5/83) - _ , * ' ' Slip Flow Studies 11 A Cone-and plate wall s l i p and inertial effects testing.using Brookfield standard solution 1000 and mineral oil @ 25 C; two cone anglesuSed ( / / Systems IV) I B Equilibrium viscosity tests @ 25 C via steady shear tests using fresh samples at each shear rate; two cone angles used (9/5/83 Systems IV) C Construction of new Couette Systems IV) slip (9/5/83 tools for measuring wall D Derivations of equations for analysisof Couette flow with slip (assuming s l i p velocity to be a function of wall shear stress) ( / / ) 111 Gel Rheology at High Shear Rates A Ordering of hardware for reciprocating capillary viscometer (computer received and functioning) IV KineticModeling - A Modification of existing polymer network theory models to incorporate chemical reaction kinetics (9/5/83) (Results of this work has not yet been reported to the API TAC) V Projected PRAC Project 82-45 Research for Balance of 1983 A Use of Couette geometry to quantify slip B Continuation of dynamic testing immediately following steady shear testing to show effects of steady shear on gel viscoelasticity C Continuation of model development forgel cross-linking r D Development ofreciprocatingcapillary viscometer for time at temperature studies (slip and high shear studies too? E- Rheological testing of gels at high temperature and pressure (Systems IV or RPR) JRC 83340ART0246 L$Io~ I

Ngày đăng: 13/04/2023, 17:45

Xem thêm: