TuÇn 1 MA TRẬN ĐỀ KIỂM TRA ĐỊNH KÌ Môn Toán (Hình học) – Lớp 8 Tuần 13 – Tiết 25 Chuẩn Mức độ Biết Hiểu Vận dụng thấp Vận dụng cao Tổng Chủ đề Kiến thức, kĩ năng TNKQ TL TNKQ TL TNKQ TL TNKQ TL Tứ giá[.]
MA TRẬN ĐỀ KIỂM TRA ĐỊNH KÌ Mơn: Tốn (Hình học) – Lớp Tuần 13 – Tiết 25 Chuẩn Chủ đề Tứ giác lồi Các loại tứ giác đặc biệt Đối xứng trục đối xứng tâm Trục đối xứng, tâm đối xứng hình Tổng số Mức độ Kiến thức, kĩ Biết TNKQ Vận dụng thấp Hiểu TL KT: Hiểu định nghĩa tứ giác, tứ giác lồi KN: Vận dụng định lí tổng góc tứ giác KT: Nắm định nghĩa, tính chất dấu hiệu nhận biết loại tứ giác đặc biệt KN: Vận dụng định nghĩa, tính chất, dấu hiệu nhận biết loại tứ giác đặc biệt để giải toán chứng minh đơn giản Vận dụng định lí đường trung bình tam giác hình thang 0,75 KT: Biết khái niệm đối xứng trục đối xứng tâm; trục đối xứng, tâm đối xứng hình KN: Biết vẽ điểm đối xứng với điểm qua trục qua điểm TNK Q TL TNK Q TL 1 0,25 0,25 Vận dụng cao TN KQ Tổng TL 0,5 0,75 5,0 6,5 3,0 0,75 3,0 3,25 11 6,0 10 UỶ BAN NHÂN DÂN HUYỆN CÁT HẢI TRƯỜNG THCS THỊ TRẤN CÁT HẢI ĐỀ KIỂM TRA 45 PHÚT Năm học: 2012 – 2013 MƠN: TỐN (HÌNH HỌC) – LỚP TIẾT 25 – TUẦN 13 Thời gian làm : 45 phút (Không kể thời gian giao đề) I Trắc nghiệm khách quan : (2,0 điểm) Hãy chọn đáp án = 600 Số đo góc D = 1300, B = 900, C Câu Cho tứ giác ABCD có A A 700 B 800 C 900 D 1000 Câu Số đo góc tứ giác ABCD theo tỉ lệ A : B : C : D = : : : Số đo góc theo thứ tự A 1200 ; 900 ; 600 ; 300; B 1400 ; 1050 ; 700 ; 350; C 1440 ; 1080 ; 720 ; 360; D Cả A, B, C sai Câu Một hình thang cân có cạnh bên 2,5cm, đường trung bình 3cm Chu vi hình thang là: A 8cm B 8,5cm C 11,5cm D 11cm Câu Trong phát biểu sau, phát biểu sai A Hình bình hành có góc vng hình chữ nhật B Hình thang có hai góc đáy góc vng hình chữ nhật C Hình thang vng có cặp góc đối 1800 hình chữ nhật D Hình thang cân có hai đường chéo hình chữ nhật Câu Trong phát biểu sau, phát biểu sai A Hình vng hình chữ nhật B Hình vng hình thang cân C Hình thoi khơng phải hình vng, hình thang cân D Hình vng hình chữ nhật hình thoi Câu Trong phát biểu sau, phát biểu sai A Tất tính chất hình bình hành hình chữ nhật B Các tính chất hình thang cân hình chữ nhật C Có tính chất có hình chữ nhật khơng có hình bình hành D Cả A, B, C sai Câu Cạnh hình thoi 25, đường chéo 14 Đường chéo A 24 B 48 C 429 D Một đáp số khác Câu Hình vng có chu vi 16 đường chéo A B 32 C D II Trắc nghiệm tự luận: (8,0 điểm) Câu (3,0 điểm) Cho tam giác ABC điểm O tuỳ ý Hãy vẽ tam giác A’B’C’ đối xứng với tam giác ABC qua điểm O Câu 10 (4,0 điểm) Cho tam giác ABC Gọi D, M, E theo thứ tự trung điểm AB, BC, CA a) Chứng minh tứ giác ADME hình bình hành b) Nếu tam giác ABC tam giác cân A tứ giác ADME hình gì? Vì sao? c) Nếu tam giác ABC vng A tứ giác ADME hình gì? Vì sao? d) Trong trường hợp tam giác ABC vuông A, cho biết AB = 6cm, AC = 8cm Tính độ dài AM Câu 11 (1,0 điểm) Cho hình thang ABCD (AB//CD) có góc A hai lần góc D Tính số đo góc A D Hết ĐÁP ÁN – BIỂU ĐIỂM CHẤM MƠN: TỐN (HÌNH HỌC) – LỚP TIẾT 25 – TUẦN 13 I Phần trắc nghiệm khách quan (2,0 điểm) Mỗi ý cho 0.25 điểm Câu Đáp án B C D D C II Phần trắc nghiệm tự luận (8,0 điểm)iểm)m) Câu Nội dung D B B Điểm B A C O 3,0 3,0 A’ C’ B’ 10 - Vẽ hình để làm ý a) 4,0 A D E B 0,5 C M a) Chứng minh tứ giác ADME hình bình hành - Vì D, M trung điểm AB BC nên DM đường trung bình ABC, DM//AC, mà E AC nên DM//AE - Lập luận tương tự ta có MB//AD - Xét tứ giác ADME có DM//AE, MB//AD nên tứ giác ADME hình bình hành b) Nếu tam giác ABC tam giác cân A tứ giác ADME hình thoi Vì: - Theo chứng minh ý a ta có DM đường trung bình ABC nên DM = AC Tương tự ME đường trung bình ABC nên ME = AB Mà ABC tam giác cân A nên ta có AB = AC, DM = ME - Mặt khác, theo chứng minh ý a ta có tứ giác ADME hình bình hành, hình bình hành ADME có DM = ME, tứ giác ADME hình thoi A D B E M C 1,0 1,0 c) Nếu tam giác ABC vuông A tứ giác ADME hình chữ nhật Vì: - Theo chứng minh ý a) ta có tứ giác ADME hình bình hành, hình = 900, tứ giác ADME hình chữ nhật bình hành ADME có A d) 0,5 A D B E M C - Vì ABC vng A có AB = 6cm, AC = 8cm nên theo định lí Pyta-go ta có : BC2 = AB2 + AC2 BC2 = 62 + 82 = 102, BC = 10cm - Vì ABC vng A có M trung điểm BC nên AM đường trung tuyến ứng với cạnh BC, ta có AM = nên AM = 11 1,0 BC, mà BC = 10cm, 10 = 5cm + D = 1800, mà A = 2D nên - Vì hình thang ABCD có AB//CD nên A = 1800 ta có D = 600, A = 600 = 1200 Từ suy D 1,0 1,0 UỶ BAN NHÂN DÂN HUYỆN CÁT HẢI TRƯỜNG THCS THỊ TRẤN CÁT HẢI ĐỀ KIỂM TRA ĐỊNH KÌ Năm học: 2012 – 2013 MƠN: TỐN (HÌNH HỌC) – LỚP TIẾT 25 – TUẦN 13 Thời gian làm : 45 phút I Trắc nghiệm khách quan: (2,0 điểm) Hãy chọn đáp án Câu Tứ giác có bốn góc nhau, số đo góc A 900 B 3600 C 1800 D 600 Câu Tứ giác có hai đường chéo cắt trung điểm vng góc với A Hình bình hành B Hình thoi C Hình chữ nhật D Hình vng Câu Hình thang có hai cạnh bên song song A Hình bình hành B Hình chữ nhật C Hình thoi D Hình vng Câu Số trục đối xứng hình thang cân A B C D Vô số Câu Tứ giác có hai đường chéo cắt trung điểm đường A Hình bình hành B Hình chữ nhật C Hình thoi D Hình vng Câu Hình bình hành có hai đường chéo vng góc với A Hình bình hành B Hình chữ nhật C Hình thoi D Hình vng Câu Hình thoi có hai đường chéo 10cm, 12cm cạnh hình thoi A 244 cm B 61 cm C 11 cm D kết khác Câu Tứ giác vừa hình chữ nhật, vừa hình thoi A Hình vng B Hình bình hành C Hình thang D Hình tam giác II Trắc nghiệm tự luận: (8,0 điểm) Câu (3,0 điểm) Cho tam giác ABC điểm O tuỳ ý Hãy vẽ tam giác A’B’C’ xứng với tam giác ABC qua điểm O Câu 10 (4,0 điểm) Cho tam giác ABC Kẻ đường trung tuyến AM, gọi D trung điểm AC, E điểm đối xứng M qua D Chứng minh: a) Tứ giác AMCE hình bình hành b) Tam giác ABC cân AMCE hình gì? Vì sao? c) Khi tam giác ABC cân tứ giác AEMB hình gì? Vì sao? d) Trong trường hợp tam giác ABC vuông A, cho biết AB = 6cm, AC = 8cm Tính độ dài AM = 2D Tính số đo góc A D Câu 11 (1,0 điểm) Cho hình thang ABCD (AB//CD) có A