1. Trang chủ
  2. » Công Nghệ Thông Tin

TRUYỀN SỐ LIỆU VÀ MẠNG Ch01 transmission media and phy layer

141 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 141
Dung lượng 6,4 MB

Nội dung

Data Communication and Networking Dr –Ing Vo Que Son Email: sonvq@hcmut.edu.vn Telecomm Dept Faculty of EEE DCN HCMUT Content Chapter 1: Transmission Media and PHY Layer Wired and Wireless Media Physical layer standards: RS232, RS422, RS485 Line Coding Digital modulation/demodulation Channel parameters Gaussian noise and BER Chapter 2: Data Communication Asynchronous data transmission Synchronous data transmission Channel Coding Data Compression Telecomm Dept Faculty of EEE DCN HCMUT Wired Media  Guided Media  How can signal be transmitted in wired media (cables)?  Voltage is sometimes referred to as electromotive force (EMF)  EMF is related to an electrical force, or pressure, that occurs when electrons and protons are separated Force within a atom Static Electricity neutron proton Electrostatic discharge Telecomm Dept Faculty of EEE DCN HCMUT Waves Sine Wave Square Wave • Repeat the same pattern at regular intervals • Repeat the same pattern at regular intervals • Continuous voltage •do not continuously voltage • occur naturally and change regularly over time • Repeat the flat pattern on both the top and bottom of the wave Telecomm Dept Faculty of EEE DCN HCMUT Two-wire open lines Used in short distance communication with low data rates Simple structure Data rate < 19Kbps, max distance LVT: decide the received bit is bit  VD vT) = Pr(1/0) =  vT 2 e  x2 2 dx  Assuming that the probability of transmitting bit and bit is the same: Pr(1)=Pr(0)=0.5 Telecomm Dept Faculty of EEE DCN HCMUT 135 Gaussian noise and BER  Probability of bit error (Bayes rule): Pe = Pr(1).Pr(0/1)+ Pr(0).Pr(1/0)  Because Pr(0)=Pr(1)=0.5, then: Pe = Pr(0/1)=Pr(1/0)  Question: what is the value of VT so that Pe is minimum? v T Pe =0.5(  - e 2πσ2 -(v T -A)2 -v T2 2σ2 2σ2 Telecomm Dept Faculty of EEE -e e =0 -(x-A)2 2σ2  dx+  vT  2πσ2 -x2 2σ2 e dx) (v T -A)2 =v 2T minimum  v T =A/2 DCN HCMUT 136 Gaussian noise and BER Finally, we need to determine Pr(1/0) or Pr(0/1): using Q(k) function Q(k) is a normal distribution function m=0, =1 In this case: VT=A/2(why?) VT/=A/2 so: Pe=Q(A/2) Area is Q(k) Let k= A/2: Pe=Q(k) Telecomm Dept Faculty of EEE DCN HCMUT 137 Gaussian noise and BER How to determine Q(k) Q(k) chart for k7: using the formula Q(k)  e 2 k Telecomm Dept Faculty of EEE k2  DCN HCMUT 138 Frame Error Rate  Given Pe  If a frame has n bits What is the Frame Error Rate?  Probability of k-bit error: Pk =CnkPek (1-Pe )n-k  P0 is the probability that there is no errors in the frame  Frame Error Rate (FER): Pf(error) = 1-P0 = 1-(1-Pe )n  nPe (because Pe

Ngày đăng: 12/04/2023, 21:01

w