Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho số thực dươngm Tính I = m∫ 0 dx x2 + 3x +[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Rm dx theo m? + 3x + 2m + m+1 m+2 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+2 m+1 2m + Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > 2e B m > e2 C m ≥ e−2 D m > Câu Cho số thực dươngm Tính I = x2 Câu Hàm số sau đồng biến R? A y = x√2 √ C y = x2 + x + − x2 − x + B y = x4 + 3x2 + D y = tan x Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường elip C Đường trịn D Đường hypebol Câu √Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh A 2π l2 − R2 B π l2 − R2 C 2πRl D πRl Câu R6 Công thức sai? A R cos x = sin x + C C a x = a x ln a + C R B R sin x = − cos x + C D e x = e x + C Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ a 3a 2a 5a C √ D B √ A 5 √ Câu lăng trụ ABC.A′ B′C ′ có đáy a, AA√′ = 3a Thể tích khối lăng trụ cho là: √ Cho A 3a3 B a3 C 3a3 D 3a3 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 → − Câu 10 Trong hệ tọa độ Oxyz cho u (2; −2; 1), kết luận sau đúng? √ không gian với→ → − − −u | = −u | = A | u | = B | u | = C |→ D |→ Câu 11 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; −3; −1) C M ′ (2; 3; 1) D M ′ (−2; 3; 1) Câu 12 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 6; 0) B (0; −2; 0) C (−2; 0; 0) D (0; 2; 0) Câu 13 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến (0; +∞) D Hàm số nghịch biến R √ Câu 14 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành 10π π A V = B V = C V = D V = π 3 Trang 1/5 Mã đề 001 Câu 15 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≤ C m < D m ≥ + 2x Câu 16 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B < m , C −4 < m < D ∀m ∈ R √ Câu 17 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ B (x − 4)2 + (y + 8)2 = 20 A (x + 4)2 + (y − 8)2 = √5 C (x − 4)2 + (y + 8)2 = D (x + 4)2 + (y − 8)2 = 20 Câu 18 Với a số thực dương tùy ý, log5 (5a) A + log5 a B + log5 a C − log5 a D − log5 a Câu 19 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 < m ≤ −3 B −4 ≤ m < −3 C −4 < m < −3 D m > −4 Câu 20 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A x − 2y − 2z − = B 3x − 4y + 6z + 34 = C x + 2y + 2z + = D −x + 2y + 2z + = Câu 21 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; 2) B M(−5; −2) C M(5; −2) D M(−2; 5) Câu 22 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; −2; 3); R = B I(−1; 2; −3); R = C I(1; 2; 3); R = D I(1; 2; −3); R = Câu 23 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π , Tính diện tích tam giác ABC lượt hình trịn xoay tích 672π, 13 A S = 96 B S = 84 C S = 364 D S = 1979 Câu 24 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A −16 B C D 16 R4 R4 R1 Câu 25 Cho f (x)dx = 10 f (x)dx = Tính f (x)dx −1 A B −2 −1 C 18 D Câu 26 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−4; −1) B S = (−1; +∞) C S = (−∞; −4) ∪ (−1; +∞) D S = [−1; +∞) Câu 27 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa3 3 3 A 3πa B πa C πa D (2 ln x + 3)3 Câu 28 Họ nguyên hàm hàm số f (x) = : x ln x + (2 ln x + 3) (2 ln x + 3)4 (2 ln x + 3)2 A + C B + C C + C D + C 8 Trang 2/5 Mã đề 001 Câu 29 Cho hàm số y = x −3x Tính y′ A y′ = (2x − 3)5 x −3x C y′ = (2x − 3)5 x −3x ln B y′ = x −3x ln D y′ = (x2 − 3x)5 x −3x ln 2x − đạt giá trị lớn đoạn [1; 3] Câu 30 Với giá trị tham số m hàm số y = x + m2 : √ A m = ±3 B m = ± C m = ±2 D m = ±1 Câu 31 Tứ diện OABC có OA = OB = OC = a đôi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 B C D A 24 12 Câu 32 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x 3π 3π π π A V = B V = C V = D V = Câu 33 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 250π 125π 400π 500π A B C D 9 d Câu 34 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ (ABC) √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng A a B 2a C a D a Câu 35 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a B C D A 3 π R2 Câu 36 Biết sin 2xdx = ea Khi giá trị a là: A B ln C D − ln Câu 37 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 38 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = C R = 14 D R = 15 Câu 39 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối √ √ √ √ chóp S ABC 3 3 a 15 a 15 a 15 a A B C D 16 Câu 40 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−3; 0) C (3; 5) D (−1; 1) Câu 41 Hàm số hàm số sau đồng biến R A y = x3 + 3x2 + 6x − B y = x4 + 3x2 4x + C y = −x3 − x2 − 5x D y = x+2 Trang 3/5 Mã đề 001 Câu 42 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a B a C 2a D A 2 Câu 43 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A K(3; 0; 15) B I(−1; −2; 3) C J(−3; 2; 7) D H(−2; −1; 3) Câu 44 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 45 Cho số phức zthỏa mãn i + tròn (C) Tính bán kính rcủa đường trịn (C) √ √ A r = B r = C r = D r = Câu 46 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A 310 B A310 C C10 D 103 Câu 47 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A −192 B 384 C −384 D 192 Câu 48 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (−∞; 3) B Hàm số cho đồng biến khoảng (1; 4) C Hàm số cho nghịch biến khoảng (3; +∞) D Hàm số cho nghịch biến khoảng (1; 4) Câu 49 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 18 C 12 D 21 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001