Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 2 (m ) B 3(m ) C (m ) D (m2 ) A Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(1; 1; 2) B I(0; 1; −2) C I(0; −1; 2) D I(0; 1; 2) Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 2π C 4π D 3π Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(5; 9; 5) B C(−3; 1; 1) C C(3; 7; 4) D C(1; 5; 3) √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận B Có tiệm cận ngang khơng có tiệm cận đứng C Khơng có tiệm cận ngang có tiệm cận đứng D Có tiệm cận ngang tiệm cận đứng √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; ) B ( ; +∞) C (0; 1) D (1; +∞) 4 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ √ trung điểm cạnh CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng √ a 15 a a B a 15 D A C Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x=5+t x = + 2t y = −1 + 3t y = −1 + t y = + 2t y = + 3t A B C D z = −1 + t z = −1 + 3t z = + 3t z = −1 + t Câu 10 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (1; 2) C (0; 1) D (−1; 2) Câu 11 Cho số phức z = + 9i, phần thực số phức z2 A 36 B −77 C D 85 Câu 12 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 A a B a C a D 2a3 Trang 1/5 Mã đề 001 Câu 13 Xét số phức z thỏa mãn z − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 28 B 14 C 11 + D 18 + R4 R4 R4 Câu 14 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C D −1 Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−1; −2; −3) B (2; 4; 6) C (−2; −4; −6) D (1; 2; 3) Câu 16 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B C D A 35 35 35 Câu 17 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực phần ảo 2i C Phần thực là3 phần ảo D Phần thực −3 phần ảo là−2 Câu 18 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B P(−2; 3) C Q(−2; −3) D N(2; 3) Câu 19 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số thực dương B Mô-đun số phức z số phức D Mô-đun số phức z số thực − 2i (1 − i)(2 + i) Câu 20 Phần thực số phức z = + 2−i + 3i 11 29 11 B − C − A 13 13 13 Câu 21 Tìm số phức liên hợp số phức z = i(3i + 1) A z = + i B z = −3 + i C z = − i D 29 13 D z = −3 − i Câu 22 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −22016 B −21008 + C −21008 D 21008 Câu 23 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B −7 C D (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 24 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A |z| = B z = C z = z D z số ảo z Câu 25 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi mơ-đun số phức√w = 6z − 25i A B C 13 D 29 Câu 26 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 2 A F(x) = (e x + 5) B F(x) = e x + C F(x) = − e x + C D F(x) = − (2 − e x ) 2 2 Câu 27 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = 10 C I = D I = Trang 2/5 Mã đề 001 Câu 28 Tìm nguyên hàm I = R xcosxdx x B I = x2 sin + C x C I = xsinx + cosx + C D I = x2 cos + C Câu 29 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) = f (x) B F ′ (x) + C = f (x) C F(x) = f ′ (x) + C D F(x) = f ′ (x) R4 R4 R3 Câu 30 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D −−→ Câu 31 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 1; 1) B (1; 1; 3) C (3; 3; −1) D (−1; −1; −3) R2 Câu 32 Tích phân I = (2x − 1) có giá trị bằng: A B C D R2 Câu 33 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A 2025 B C −2024 D 2024 A I = xsinx − cosx + C Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 D P = (|z| − 2)2 C P = |z|2 − A P = (|z| − 4)2 B P = |z|2 − Câu 35 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | √ Câu 36 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 B < |z| < C |z| < D |z| > A ≤ |z| ≤ 2 2 + z + z2 Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 38 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 A T = 13 B T = C T = D T = 13 3 Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = 34 + C P = + D P = z Câu 40 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B C 2 D 2 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ D A B √ C 2 Câu 42 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = D A = + i Trang 3/5 Mã đề 001 Câu 43 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 10 31 11 17 10 16 B M( ; ; ) C M( ; ; ) D M( ; ; ) A M( ; ; ) 3 3 3 3 3 Câu 45 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 17 πa2 15 B C D A √ Câu 46 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình với x ∈ (4; +∞) C Bất phương trình vơ nghiệm D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = Câu 48 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B 1 R3 R2 R3 C R3 D R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx |x2 − 2x|dx = − R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 49 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a < a x > ay ⇔ x < y C Nếu a > a x > ay ⇔ x > y D Nếu a > a x = ay ⇔ x = y √ 2x − x2 + có số đường tiệm cận đứng là: Câu 50 Đồ thị hàm số y = x2 − A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001