1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (818)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 123,83 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính nguyên hàm ∫ cos 3xdx A − 1 3 sin 3x +C B 1 3 sin 3x +C C 3 sin 3x[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 R Câu Tính nguyên hàm cos 3xdx 1 B sin 3x + C A − sin 3x + C 3 C sin 3x + C D −3 sin 3x + C Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 2 (m ) B (m ) C 3(m ) (m ) A D a3 Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 300 B 1350 C 600 D 450 Câu Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 B D A = = C = = V2 V2 V2 V2 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = D Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng √ x Câu Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = Câu Cho hàm số y = Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: ln3 A y′ = B y′ = C y′ = x x xln3 R Câu 10 Cho dx = F(x) + C Khẳng định đúng? x 1 A F ′ (x) = − B F ′ (x) = C F ′ (x) = lnx x x D y′ = − xln3 D F ′ (x) = x2 Trang 1/5 Mã đề 001 Câu 11 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (−∞; 1) C (3; +∞) D (0; 2) Câu 12 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = R B d = C d > R D d < R Câu 13 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B 15 C D 17 Câu R14 Cho hàm số f (x) = cosx + x Khẳng định nàoRdưới đúng? A f (x) = sinx + x2 + C B f (x) = −sinx + x2 + C R R x2 x2 C f (x) = sinx + + C D f (x) = −sinx + + C 2 Câu 15 Phần ảo số phức z = − 3i A B −2 C D −3 Câu 16 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (0; 2) B (2; 0) C (−2; 0) D (0; −2) Câu 17 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z + z + C z · z + z + z + D z2 + 2z + Câu 18 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B Chỉ có số C D Khơng có số z2 Câu 19 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B 11 C D 13 Câu 20 2i, z2 = − i Giá trị của√biểu thức |z1 + z1 z2 | √ Cho số phức z1 = + √ √ A 30 B 10 C 130 D 10 Câu 21 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực là−3 phần ảo −2i C Phần thực −3 phần ảo là−2 D Phần thực là3 phần ảo 4(−3 + i) (3 − i)2 + Mô-đun số phức w = z − iz + Câu 22 Cho số phức z thỏa mãn z = −i √ √ √ − 2i √ A |w| = B |w| = C |w| = 48 D |w| = 85 (1 + i)(2 − i) Câu 23 Mô-đun số phức z = + 3i √ √ B |z| = C |z| = D |z| = A |z| = Câu 24 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = + 7i C w = −7 − 7i D w = − 3i Câu 25 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B −3 C D R Câu 26 Tìm nguyên hàm I = xcosxdx x A I = xsinx − cosx + C B I = x2 cos + C x C I = x sin + C D I = xsinx + cosx + C Trang 2/5 Mã đề 001 −−→ Câu 27 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (−1; −1; −3) B (3; 1; 1) C (1; 1; 3) D (3; 3; −1) Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x + 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x − 2)2 + y2 + z2 = D (x + 2)2 + y2 + z2 = Câu 29 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A M(−2; 1; −8) B P(3; 1; 3) C Q(1; 2; −5) D N(4; 2; 1) Câu R30 Mệnh đề sau sai? A R f ′ (x) = f (x) R + C với hàm số f (x) có đạo hàm liên tục R B R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R C R ( f (x) − g(x)) = R f (x) − R g(x), với hàm số f (x); g(x) liên tục R D ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R Câu 31 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x − y + z + = B x + y − z − = C x + y − z + = D 6x + y − z − = Câu 32 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx − cosx + C B F(x) = −sinx + cosx + C C F(x) = sinx − cosx + C D F(x) = sinx + cosx + C Câu 33 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? a A b f (x) = F(b) − F(a) b Rb B a f (2x + 3) = F(2x + 3) a C Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Rb D a k · f (x) = k[F(b) − F(a)] = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 1 B ; +∞ C 0; D ; A ; 4 4 Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − Câu 35 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Câu 36 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 37 Cho a, b, c số thực z = − + 2 A B a2 + b2 + c2 − ab − bc − ca C a + b + c D a2 + b2 + c2 + ab + bc + ca z Câu 38 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? 1√+ |z|2 1 A B C D Trang 3/5 Mã đề 001 Câu 39 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Câu 40 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 z số thực Giá trị lớn Câu 41 Cho số phức z thỏa mãn z số thực ω = + z2 biểu thức M = |z + − i| √ √ C 2 D A B Câu 42 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B z số thực không dương C Phần thực z số âm D |z| = Câu 43 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 45 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = 0.√ A R = 15 B R = 14 C R = D R = Câu 46 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 47 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 x2 + mx + đạt cực tiểu điểm x = x+1 C m = D Khơng có m Câu 48 Tìm tất giá trị tham số m để hàm số y = A m = −1 B m = Câu 49 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π B 6π ln + 5 C 6π cos x π F(− ) = π Khi giá trị sin x + cos x D 3π ln + √ Câu 50 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình với x ∈ (4; +∞) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình vơ nghiệm Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 11/04/2023, 18:26

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN