Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lăng trụ đứng ABC A1B1C1 có AB = a, AC = 2a, AA1 = 2a √ 5 và B̂[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ √ trung điểm cạnh√CC1 , BB1 Tính khoảng cách từ điểm I đến mặt phẳng √ a a 15 a D B C a 15 A 3 Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B −1 C D π Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π A V = B V = C V = D V = 5 3 √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A ( ; +∞) B (1; +∞) C (0; ) D (0; 1) 4 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(5; 9; 5) C C(3; 7; 4) D C(−3; 1; 1) Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (−∞; 2] C (1; 2) D (1; 2] √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang khơng có tiệm cận đứng B Khơng có tiệm cận C Có tiệm cận ngang tiệm cận đứng D Khơng có tiệm cận ngang có tiệm cận đứng Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A − B C D 6 Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 10 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 210 B 225 C 105 D 30 Câu 11 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D 2 Câu 12 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 45◦ B 60◦ C 90◦ D 30◦ Trang 1/5 Mã đề 001 Câu 13 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B C D A 35 35 35 Câu 14 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln(6a2 ) B ln C ln D lna Câu 15 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (1; +∞) C (1; 2) D (2; +∞) R2 R2 Câu 16 Nếu f (x) = [ f (x) − 2] A B C D −2 4(−3 + i) (3 − i) + Mô-đun số phức w = z − iz + Câu 17 Cho số phức z thỏa mãn z = −i √ √ √ − 2i √ B |w| = 48 C |w| = D |w| = 85 A |w| = Câu 18 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D !2016 !2018 1+i 1−i Câu 19 Số phức z = + 1−i 1+i A B + i C D −2 Câu 20 Cho số phức z = + 5i Tìm số phức w = iz + z A w = − 3i B w = −3 − 3i C w = −7 − 7i D w = + 7i Câu 21 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B z · z = a2 − b2 C |z2 | = |z|2 D z − z = 2a A z + z = 2bi Câu 22 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ Cho số phức z1 = + √ √ A 130 B 10 C 30 D 10 Câu 23 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 25 1 Câu 24 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −17 B 17 C −31 D 31 Câu 25 Cho hai √ số phức z1 + z2 √ số phức z1 = + i z2 = − 3i Tính mơ-đun B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = A |z1 + z2 | = 13 Câu 26 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 1 2 2 A F(x) = − (2 − e x ) B F(x) = − e x + C C F(x) = (e x + 5) D F(x) = e x + 2 2 Câu 27 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Trang 2/5 Mã đề 001 B Ra C Rb D Rb b a a f (x) = F(b) − F(a) b f (2x + 3) = F(2x + 3) a k · f (x) = k[F(b) − F(a)] Câu 28 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z + = B 3x + 2y + z − = C 3x − 2y + z − 12 = D 3x − 2y + z − = Câu 29 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 0; 2) B C(−1; 0; −2) C C(1; 4; 4) D C(−1; −4; 4) Câu 30 Tìm hàm số F(x) khơng ngun hàm hàm số f (x) = sin2x B F(x) = −cos2x C F(x) = −cos2 x D F(x) = sin2 x A F(x) = − cos2x Câu 31 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = 10 B I = C I = D I = Câu 32 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A N(4; 2; 1) B M(−2; 1; −8) C P(3; 1; 3) D Q(1; 2; −5) R2 Câu 33 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 34 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 √ Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm M C điểm N D điểm P 2z − i Mệnh đề sau đúng? Câu 36 Cho số phức z thỏa mãn |z| ≤ ĐặtA = + iz A |A| ≤ B |A| ≥ C |A| < D |A| > z+1 Câu 37 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = 2 √ Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 39 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = B P = 2016 C P = −2016 D max T = Trang 3/5 Mã đề 001 Câu 40 Cho số phức z , cho z số thực w = |z| bằng? + |z|2 A z số thực Tính giá trị biểu + z2 thức √ B C D Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu thức P = |z1 | + |z2 | √ √ √ √ B P = 34 + C P = D P = 26 A P = + Câu 42 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng B 36080254 đồng C 36080251 đồng D 36080253 đồng Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = −1 + 2t x = − 2t x = + 2t y = −2 + 3t y = + 3t y = −2 + 3t y = −2 − 3t A B C D z = − 5t z = −4 − 5t z = + 5t z = − 5t √ 2x − x2 + có số đường tiệm cận đứng là: Câu 46 Đồ thị hàm số y = x2 − A B C D Câu 47 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Câu 48 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2abc C P = 2a+2b+3c D P = 26abc Câu 49 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích toàn phần (T ) A 6π B 8π C 10π D 12π √ Câu 50 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = (x − 1) ln 2(x − 1) ln (x − 1)log4 e D y′ = √ x2 − ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001