Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính nguyên hàm ∫ cos 3xdx A − 1 3 sin 3x +C B 3 sin 3x +C C −3 sin 3x +[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 R Câu Tính nguyên hàm cos 3xdx A − sin 3x + C B sin 3x + C C −3 sin 3x + C D sin 3x + C √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Khơng có tiệm cận C Có tiệm cận ngang tiệm cận đứng D Có tiệm cận ngang khơng có tiệm cận đứng R Câu R3 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = F(2x − 1) + C R R D f (2x − 1)dx = 2F(x) − + C C f (2x − 1)dx = F(2x − 1) + C Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền √ √ 2a Tính thể tích 3của khối nón 2π.a π.a3 4π 2.a3 π 2.a3 B C D A 3 3 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π A V = B V = C V = D V = 3 5 Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m = C m , D m , −1 Câu Phần ảo số phức z = − 3i A −2 B C −3 D Câu 10 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 48 B 90 C 89 D 49 Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (1; 2; 3) C (2; 4; 6) D (−1; −2; −3) Trang 1/5 Mã đề 001 Câu 12 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (2; 3) B (6; 7) C (4; 5) D (3; 4) Câu 13 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 30◦ C 60◦ D 90◦ Câu 14 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 105 B 30 C 225 D 210 y−1 z−1 x−2 Câu 15 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 C D A B 3 Câu 16 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πr2 l B 2πrl C πrl2 D πrl 3 Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D 2 4(−3 + i) (3 − i) Câu 18 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ B |w| = C |w| = 48 D |w| = 85 A |w| = Câu 19 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z2 + 2z + C z + z + Câu 20 Những số sau vừa số thực vừa số ảo? A Chỉ có số B C Khơng có số D z · z + z + z + D C.Truehỉ có số Câu 21 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −3 C −7 D Câu 22 Cho số phức z = + 5i Tìm số phức w = iz + z A w = − 3i B w = −7 − 7i C w = + 7i D w = −3 − 3i Câu 23 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D (1 + i)(2 − i) Câu 24 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = 2(1 + 2i) Câu 25 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C 13 D Câu 26 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; −1; −4) B (3; 1; 4) C (−3; −1; −4) D (−3; −1; 4) Trang 2/5 Mã đề 001 −−→ Câu 27 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (1; 1; 3) B (−1; −1; −3) C (3; 1; 1) D (3; 3; −1) R3 Câu 28 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 D ( ; 1) A (−1; 0) B (1; 2) C (0; ) 2 R4 R4 R3 Câu 29 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D R2 Câu 30 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 31 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A 6x + y − z − = B x + y − z + = C x + y − z − = D x − y + z + = Câu 32 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = D I = 10 Câu 33 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? Rb A a k · f (x) = k[F(b) − F(a)] Ra B b f (x) = F(b) − F(a) C Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hoành tính theo cơng thức S = F(b) − F(a) b Rb D a f (2x + 3) = F(2x + 3) a Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ B P = C P = 26 D P = 34 + A P = + Câu 35 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Câu 36 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 97 85 B T = C T = 13 D T = A T = 13 3 √ 2 Mệnh đề Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.√ 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Câu 38 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 39 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = B max T = C P = 2016 D P = −2016 Câu 40 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A Phần thực z số âm B |z| = C z số thực không dương D z số ảo Trang 3/5 Mã đề 001 √ Câu 41 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a + b + c 2 C a + b + c − ab − bc − ca D a2 + b2 + c2 + ab + bc + ca Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = |z|2 − D P = (|z| − 4)2 Câu 43 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln B y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x > y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x < y Câu 45 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 2 3 Câu 46 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B R3 C R3 R2 |x − 2x|dx = (x − 2x)dx − D |x2 − 2x|dx = − R3 (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + Câu 47 Biết a, b ∈ Z cho A R3 R B (x2 − 2x)dx (x + 1)e2x dx = ( ax + b 2x )e + C Khi giá trị a + b là: C D Câu 48 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 12π C 6π D 10π Câu 49 Chọn mệnh đề mệnh đề sau: R R e2x (2x + 1)3 2x A e dx = +C B (2x + 1) dx = + C R R C sin xdx = cos x + C D x dx =5 x + C Câu 50 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = x3 − 3x2 C y = −2x4 + 4x2 D y = −x4 + 2x2 + Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001