Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính nguyên hàm ∫ cos 3xdx A − 1 3 sin 3x +C B 1 3 sin 3x +C C 3 sin 3x[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 R Câu Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B sin 3x + C 3 C sin 3x + C D −3 sin 3x + C Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền √ √ 3bằng 2a Tính thể tích 3của khối nón 2π.a π.a3 4π 2.a3 π 2.a B C D A 3 3 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A B C D − 6 √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang tiệm cận đứng B Có tiệm cận ngang khơng có tiệm cận đứng C Khơng có tiệm cận D Khơng có tiệm cận ngang có tiệm cận đứng Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m > D m ≥ −1 Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − m2 − 12 B C D A 2m 2m m 2m Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D 800π Câu 10 Cho khối nón có đỉnh S , chiều cao thể tích Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 R Câu 11 Cho dx = F(x) + C Khẳng định đúng? x 1 A F ′ (x) = − B F ′ (x) = C F ′ (x) = D F ′ (x) = lnx x x x Trang 1/5 Mã đề 001 Câu 12 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (3; +∞) B (1; 3) C (−∞; 1) D (0; 2) Câu 13 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A B −2 C −3 D Câu 14 Với a số thực dương tùy ý, ln(3a) − ln(2a) C ln A ln(6a2 ) B ln Câu 15 Tập nghiệm bất phương trình x+1 < A (−∞; 1) B [1; +∞) C (−∞; 1] Câu 16 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = xπ−1 C y′ = πxπ−1 π D lna D (1; +∞) D y′ = xπ−1 Câu 17 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B −1 ≤ m ≤ C m ≥ m ≤ −1 D ≤ m ≤ Câu 18 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số thực B Mô-đun số phức z số thực dương D Mô-đun số phức z số phức Câu 19 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B C Khơng có số (1 + i)(2 − i) √ + 3i B |z| = C |z| = D Chỉ có số Câu 20 Mơ-đun số phức z = A |z| = √ D |z| = √ Câu 21 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −9 B C −10 D 10 2(1 + 2i) Câu 22 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C 13 D Câu 23 Cho số phức z = + 5i Tìm số phức w = iz + z A w = + 7i B w = −3 − 3i C w = −7 − 7i D w = − 3i Câu 24 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 − i B z = + i C z = −3 + i D z = − i Câu 25 Tính √ mơ-đun số phức z thỏa mãn z(2 − i) + 13i = √ 34 A |z| = B |z| = 34 C |z| = 34 √ D |z| = 34 −−→ Câu 26 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 1; 1) B (3; 3; −1) C (−1; −1; −3) D (1; 1; 3) Câu 27 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z − = B −2x + y − z + = C 2x + y − z − = D −2x + y − z + = R3 Câu 28 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A (−1; 0) B ( ; 1) C (1; 2) D (0; ) 2 Câu 29 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A −2 B C D Trang 2/5 Mã đề 001 Câu 30 Tìm nguyên hàm I = x A I = x2 cos + C C I = xsinx − cosx + C R xcosxdx B I = xsinx + cosx + C x D I = x2 sin + C Câu 31 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 2 A F(x) = − e x + C B F(x) = (e x + 5) C F(x) = e x + D F(x) = − (2 − e x ) 2 2 Câu R32 Mệnh đề nàoRsau sai? R A ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R R R R B ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R R R C k f (x) = k f (x) với số k với hàm số f (x) liên tục R R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R Câu 33 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) b Rb B a f (2x + 3) = F(2x + 3) a Ra C b f (x) = F(b) − F(a) Rb D a k · f (x) = k[F(b) − F(a)] Câu 34 Cho số phức z thỏa mãn z số thực ω = biểu thức √ M = |z + − i| √ A B 2 C z số thực Giá trị lớn + z2 D Câu 35 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B Phần thực z số âm C z số thực không dương D |z| = √ điểm A hình vẽ bên điểm Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm N Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = B P = 34 + C P = 26 D P = + Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = |z|2 − D P = (|z| − 4)2 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ C D 2 Trang 3/5 Mã đề 001 √ Câu 40 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 B |z| < C ≤ |z| ≤ D |z| > A < |z| < 2 2 Câu 41 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D √ 2 Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Câu 43 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B m < C m > −2 D −4 ≤ m ≤ −1 Câu 44 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = 2loga e C P = D P = + 2(ln a)2 Câu 45 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 46 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2a+2b+3c C P = 2abc D P = 26abc Câu 47 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 14 B R = C R = 15 D R = Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 49 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 33π 31π A 6π B C D 5 Câu 50 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001