1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (840)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,25 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x = 1 + 2ty = 2 +[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m = B m , C m , D m , −1 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ √ trung điểm cạnh CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng √ a 15 a a B a 15 D A C Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(5; 9; 5) B C(3; 7; 4) C C(1; 5; 3) D C(−3; 1; 1) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 0; 3) B A(1; 2; 0) C A(1; 0; 3) D A(0; 2; 3) Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D 2 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x + y + z − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường tròn có bán kính lớn A m = −7 B m = C m = D m = Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B ln − C ln + D − ln − 2 2 2 Câu Trên tập hợp số phức, xét phương trình z − 2(m + 1)z + m = ( m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 10 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 A B C D Câu 11 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D Câu 12 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = B y′ = C y′ = D y′ = − x xln3 x xln3 Trang 1/5 Mã đề 001 Câu 13 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πr2 l B πrl C πrl2 D 2πrl 3 Câu 14 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B C 15 D 17 Câu 15 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (3; 4) B (4; 5) C (2; 3) D (6; 7) Câu 16 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C D 12 Câu 17 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = 2i C P = + i D P = Câu 18 Số phức z = A (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C D 21008 Câu 19 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2k C A = D A = 2ki Câu 20 Tính √ mơ-đun số phức z thỏa mãn z(2 − i) + 13i√= 34 34 A |z| = B |z| = 34 C |z| = 3 D |z| = √ 34 Câu 21 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z + z = 2bi B z − z = 2a C |z2 | = |z|2 D z · z = a2 − b2 Câu 22 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = (1 + i)(2 − i) Câu 23 Mô-đun số phức z = √ √ + 3i B |z| = C |z| = A |z| = D |z| = Câu 24 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ Cho số phức z1 = + √ √ A 130 B 10 C 30 D 10 25 1 Khi phần ảo z bao nhiêu? = + z + i (2 − i)2 B −31 C −17 D 31 Câu 25 Cho số phức z thỏa A 17 Câu R26 Mệnh đề sau sai? A f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R R R B k f (x) = k f (x) với số k với hàm số f (x) liên tục R R R R C ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R R R R D ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R Câu 27 Nguyên hàm A x + ln2 x + C R + lnx dx(x > 0) x B ln2 x + lnx + C C x + ln2 x + C D ln2 x + lnx + C Trang 2/5 Mã đề 001 Câu 28 Biết R1 x2 a a 3x − dx = 3ln − , a, b nguyên dương phân số tối giản Hãy + 6x + b b tính ab A ab = B ab = C ab = 12 R1 e−x dx e−1 C A e − B e e R2 Câu 30 Tích phân I = (2x − 1) có giá trị bằng: A B C Câu 29 Tích phân D ab = −5 D − e D Câu 31 Tìm hàm số F(x) không nguyên hàm hàm số f (x) = sin2x A F(x) = sin2 x B F(x) = −cos2x C F(x) = − cos2x D F(x) = −cos2 x R1 R R1 R1 Câu 32 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A B −8 C −3 D 12 Câu 33 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; 1; 4) B (−3; −1; −4) C (3; −1; −4) D (−3; −1; 4) √ Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ bao nhiêu? √ √ √ + z3 | + 3|z3 + z1 | 10 B Pmax = C Pmax = D Pmax = A Pmax = 3 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng?  2  2 A P = (|z| − 2)2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − Câu 36 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B −21008 C −22016 D 21008 √ Câu 37 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 − ab − bc − ca C a + b + c D a2 + b2 + c2 + ab + bc + ca √ 2 Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 3√ 2 2 2 C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = D |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 2 Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp sau đây? ! ! ! 1 9 A ; B 0; C ; D ; +∞ 4 4 z Câu 40 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B 2 C D Trang 3/5 Mã đề 001 Câu 41 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 42 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 2 C < |z| < D + z + z2 số thực − z + z2 < |z| < 2 Câu 43 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 44 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 2 3 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 11 17 10 31 10 16 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vuông góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 B C D A 16 √ 2x − x2 + Câu 47 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 48 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 4a3 B 9a3 C 3a3 D 6a3 Câu 49 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích toàn phần (T ) A 10π B 12π √ Câu 50 Cho bất phương trình C 8π 2(x−1)+1 D 6π − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình vơ nghiệm C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 11/04/2023, 16:03

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN