Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ có cạnh bằng a Tính thể tích khối chóp[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B C −1 D π Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số đồng biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (−∞; −3) R Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(2x − 1) + C Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m , −1 C m = D m , Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D R dx = ln T Giá trị T là: Câu Biết 2x − √ A T = B T = 81 C T = D T = Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể tích√của khối nón √ 4π 2.a3 π 2.a3 π.a3 2π.a3 A B C D 3 3 Câu Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B 17 C D 15 2 x − 16 x − 16 Câu 10 Có số nguyên x thỏa mãn log3 < log7 ? 343 27 A 184 B 92 C 193 D 186 Câu 11 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D x−1 y−2 z+3 Câu 12 Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A Q(1; 2; −3) B N(2; 1; 2) C M(2; −1; −2) D P(1; 2; 3) Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (2; 4; 6) C (−1; −2; −3) D (1; 2; 3) Câu 14 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 45◦ C 90◦ D 30◦ Trang 1/5 Mã đề 001 Câu 15 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D x−2 y−1 z−1 Câu 16 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 B C D A 3 Câu 17 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 B (1 + i)2018 = 21009 i C (1 + i)2018 = −21009 i D (1 + i)2018 = 21009 Câu 18 Tìm số phức liên hợp số phức z = i(3i + 1) A z = − i B z = −3 + i C z = + i D z = −3 − i − 2i (1 − i)(2 + i) Câu 19 Phần thực số phức z = + 2−i + 3i 29 29 11 11 B C − D A − 13 13 13 13 Câu 20 Cho hai số phức z1 = + i z2 = − 3i Tính mô-đun √ số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 Câu 21 Trong kết luận sau, kết luận sai A Mô-đun số phức z số phức C Mô-đun số phức z số thực dương B Mô-đun số phức z số thực D Mô-đun số phức z số thực không âm Câu 22 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i =√1 √ 34 34 A |z| = 34 B |z| = C |z| = D |z| = 34 3 Câu 23 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B 10 C −10 D −9 Câu 24 Cho số phức z = + 5i Tìm số phức w = iz + z A w = + 7i B w = −7 − 7i C w = − 3i D w = −3 − 3i (1 + i)2017 Câu 25 Số phức z = có phần thực phần ảo đơn vị? 21008 i 1008 A B C D R2 Câu 26 Tính tích phân I = xe x dx A I = −e2 B I = e C I = 3e2 − 2e D I = e2 R1 Câu 27 Tích phân e−x dx 1 e−1 A B − C e − D e e e Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = C (x − 2)2 + y2 + z2 = D (x + 2)2 + y2 + z2 = Câu 29 Tìm nguyên hàm hàm số f (x) = √ 2x + R R 1√ A f (x)dx = √ + C B f (x)dx = 2x + + C R R √2x + √ D f (x) = 2x + + C C f (x)dx = 2x + + C R0 Câu 30 Giá trị −1 e x+1 dx A e B −e C e − D − e Trang 2/5 Mã đề 001 Câu 31 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A Q(1; 2; −5) B N(4; 2; 1) C P(3; 1; 3) D M(−2; 1; −8) Câu 32 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A 2x + y − z − = B −2x + y − z − = C −2x + y − z + = D −2x + y − z + = Câu 33 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 1 2 A F(x) = (e x + 5) B F(x) = e x + C F(x) = − (2 − e x ) D F(x) = − e x + C 2 2 Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = + C P = 34 + D P = Câu 35 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | z+1 số ảo Tìm |z| ? z−1 B |z| = C |z| = Câu 36 Cho số phức z , thỏa mãn A |z| = D |z| = Câu 37 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 √ Câu 38 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B C a + b + c D a2 + b2 + c2 + ab + bc + ca Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 4)2 D P = (|z| − 2)2 = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp ! sau đây? ! ! 9 A 0; B ; C ; +∞ D ; 4 4 √ Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 √ Câu 42 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm N Trang 3/5 Mã đề 001 Câu 43 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A B C D 12 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C D −4 Câu 45 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 46 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 23 B 27 Câu 47 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B C 29 D 25 ax + b 2x )e + C Khi giá trị a + b là: C D Câu 48 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 15 πa2 17 A B C D 4 Câu 49 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 12π C 10π D 6π Câu 50 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001