Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết 5∫ 1 dx 2x − 1 = ln T Giá trị của T là A T = 3 B T = 9 C T = 81 D T[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Biết R5 A T = dx = ln T Giá trị T là: 2x − B T = C T = 81 D T = √ √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (1; +∞) B (0; 1) C ( ; +∞) D (0; ) 4 Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = −x4 + 2x2 + C y = x4 + D y = x4 + 2x2 + Câu Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab2 ) = ln a + ln b B ln( ) = b ln b C ln(ab) = ln a ln b D ln(ab2 ) = ln a + (ln b)2 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = B Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu Cho hàm số y = Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số đồng biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (−∞; −3) C Hàm số nghịch biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (1; +∞) Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền √ √ 3bằng 2a Tính thể tích3 khối nón π.a 2π.a3 4π 2.a3 π 2.a B C D A 3 3 Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A < m < B −2 < m < C m = D −2 ≤ m ≤ Câu Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = −sinx + + C B f (x) = sinx + x2 + C R R x2 C f (x) = sinx + + C D f (x) = −sinx + x2 + C x−2 y−1 z−1 Câu 10 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Trang 1/5 Mã đề 001 Câu 11 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 12 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (1; 2) C (1; 0) D (0; 1) R2 R2 Câu 13 Nếu f (x) = [ f (x) − 2] A B −2 C D Câu 14 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 a B 2a a D a A C Câu 15 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 14 B 11 + C 28 D 18 + Câu 16 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D 2 Câu 17 Cho số phức z thỏa (1 − 2i)z + (1 + 3i) = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B P(−2; 3) C M(2; −3) D N(2; 3) Câu 18 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 4(−3 + i) (3 − i) Câu 19 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ √ − 2i A |w| = B |w| = 48 C |w| = 85 D |w| = Câu 20 √ Cho số phức z1 = +√2i, z2 = − i Giá trị biểu √ thức |z1 + z1 z2 | √ A 30 B 130 C 10 D 10 (1 + i)(2 + i) (1 − i)(2 − i) Câu 21 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A |z| = B z = C z số ảo D z = z z Câu 22 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = C P = + i D P = 2i Câu 23 Những số sau vừa số thực vừa số ảo? A B C.Truehỉ có số C Khơng có số D Chỉ có số Câu 24 √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w = 6z − 25i √ Cho số phức z thỏa mãn A 29 B C D 13 2017 (1 + i) Câu 25 Số phức z = có phần thực phần ảo đơn vị? 21008 i A B C D 21008 Trang 2/5 Mã đề 001 Câu 26 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z − = B −2x + y − z + = C −2x + y − z + = D 2x + y − z − = Câu 27 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x + 2)2 + y2 + z2 = D (x + 2)2 + y2 + z2 = R2 Câu 28 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A 2025 B 2024 C −2024 D Câu 29 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (−3; −1; 4) B (3; −1; −4) C (−3; −1; −4) D (3; 1; 4) R1 Câu 30 Tích phân e−x dx e−1 B − C e − D A e e e Câu 31 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 B I = 10 C I = D I = A I = Câu 32 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ A f (x)dx = √ + C B f (x) = 2x + + C 2x + R R √ 1√ C f (x)dx = 2x + + C D f (x)dx = 2x + + C R4 R4 R3 Câu 33 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D + z + z2 Câu 34 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 √ Câu 35 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B |z| > C ≤ |z| ≤ D |z| < 2 2 Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 1 A ; +∞ B ; C 0; D ; 4 4 Câu 37 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| ≥ B |A| < 2z − i Mệnh đề sau đúng? + iz C |A| > D |A| ≤ Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 39 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B z số thực không dương C |z| = D Phần thực z số âm Trang 3/5 Mã đề 001 Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A D B C √ 2 Câu 41 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = D P = C P = 2 Câu 42 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| B P = −2016 C P = 2016 D P = A max T = Câu 43 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = 2loga e C P = D P = + 2(ln a)2 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = 0.√ A R = 15 B R = 14 C R = D R = −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ → − → − → − → C u + v = (2; 14; 14) D u + 3−v = (1; 13; 16) Câu 46 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 47 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 R3 D |x2 − 2x|dx = (x2 − 2x)dx − R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = − (x2 − 2x)dx |x2 − 2x|dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 48 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A −4 B C D −2 Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng √ √ a 15 3a 3a 3a 30 A B C D 2 10 Câu 50 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x > y x y C Nếu a < a > a ⇔ x < y D Nếu a > a x > ay ⇔ x < y Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001