Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y = ( √ π)sin 2x trên R bằng? A 1 B 0 C π D[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ sin 2x Câu Giá trị lớn hàm số y = ( π) A B R bằng? C π D √ π Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 4π C 2π D 3π Câu Cho a, b hai số thực dương Mệnh đề đúng? ln a a B ln(ab2 ) = ln a + ln b A ln( ) = b ln b C ln(ab2 ) = ln a + (ln b)2 D ln(ab) = ln a ln b Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = C f (−1) = −5 D f (−1) = −3 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C a D 2 Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể tích khối nón √ √ 4π 2.a 2π.a3 π.a3 π 2.a3 A B C D 3 3 √ x Câu Tìm nghiệm phương trình x = ( 3) A x = B x = C x = D x = −1 √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang khơng có tiệm cận đứng B Khơng có tiệm cận ngang có tiệm cận đứng C Khơng có tiệm cận D Có tiệm cận ngang tiệm cận đứng 2x + đường thẳng có phương trình: Câu Tiệm cận ngang đồ thị hàm số y = 3x − 1 2 A y = − B y = − C y = D y = 3 3 Câu 10 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (3; +∞) B (−∞; 1) C (0; 2) D (1; 3) Câu 11 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 18 + B 14 C 11 + D 28 Câu 12 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 225 B 30 C 210 D 105 Trang 1/5 Mã đề 001 Câu 13 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 B C D A x−2 y−1 z−1 Câu 14 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 R Câu 15 Cho dx = F(x) + C Khẳng định đúng? x 1 A F ′ (x) = B F ′ (x) = C F ′ (x) = − D F ′ (x) = lnx x x x R2 R2 Câu 16 Nếu f (x) = [ f (x) − 2] A B −2 C D √ Câu 17 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A −1 ≤ m ≤ B ≤ m ≤ C m ≥ m ≤ −1 D m ≥ m ≤ Câu 18 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B N(2; 3) C P(−2; 3) D M(2; −3) !2016 !2018 1−i 1+i + Câu 19 Số phức z = 1−i 1+i A B −2 C + i D 25 1 Câu 20 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 17 B 31 C −17 D −31 (1 + i)(2 − i) Câu 21 Mô-đun số phức z = √ + 3i √ A |z| = B |z| = C |z| = D |z| = Câu 22 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B -1 C D Câu 23 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 + C −21008 D −22016 Câu 24 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B z − z = 2a C |z2 | = |z|2 D z + z = 2bi z2 Câu 25 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ C D A 13 B 11 R Câu 26 Tìm nguyên hàm I = xcosxdx x A I = xsinx − cosx + C B I = x2 sin + C x C I = xsinx + cosx + C D I = x cos + C R0 Câu 27 Giá trị −1 e x+1 dx A e − B − e C e D −e Câu 28 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x − = B z − = C y − = D x + y + z − = Trang 2/5 Mã đề 001 Câu 29 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 1 2 A F(x) = − e x + C B F(x) = (e x + 5) C F(x) = − (2 − e x ) D F(x) = e x + 2 2 2 Câu 30 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = 10 D I = Câu 31 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx + cosx + C B F(x) = sinx + cosx + C C F(x) = −sinx − cosx + C D F(x) = sinx − cosx + C Câu 32 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z − 15 = B x + 2y + 2z + 15 = C x + 2y + 2z − 15 = D x − 2y + 2z + 15 = Câu 33 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B −2 C D Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm P D điểm S √ Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N C điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm Q C điểm P D điểm M Câu 36 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = C A = + i D A = −1 Câu 37 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Câu 38 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − Câu 40 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ C 13 D A B Câu 41 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 2 C < |z| < D + z + z2 số thực − z + z2 < |z| < 2 Trang 3/5 Mã đề 001 Câu 42 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ D P = A P = B P = C P = 2 Câu 43 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 d Câu 44 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A 2a B a C a D a 3x cắt đường thẳng y = x + m Câu 45 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B Không tồn m C m = −2 D m = Câu 46 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D √ Câu 47 Tính đạo hàm hàm số y = log4 x2 − A y′ = √ x2 − ln B y′ = 2(x2 x − 1) ln C y′ = (x2 x − 1) ln D y′ = (x2 x − 1)log4 e Câu 48 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = πRh + πR2 C S = πRl + 2πR2 D S = 2πRl + 2πR2 Câu 49 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = C P = 2loga e D P = ln a Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B −2 C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001