Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20 A yCD = 36 B yCD =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = C yCD = 52 D yCD = −2 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B π C 2π D 4π Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 D ( ; +∞) A [22; +∞) B ( ; 2] [22; +∞) C [ ; 2] [22; +∞) 4 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π B V = C V = D V = A V = 5 Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2] B (−∞; 2] C [2; +∞) D (1; 2) Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m , C m = D m , −1 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(5; 9; 5) C C(3; 7; 4) D C(−3; 1; 1) Câu Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho B πr2 l C 2πrl D πrl A πrl2 3 Câu 10 Cho số phức z = + 9i, phần thực số phức z2 A 36 B C 85 D −77 Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−1; −2; −3) B (−2; −4; −6) C (1; 2; 3) D (2; 4; 6) Câu 12 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln B lna C ln(6a2 ) 2 D ln x−2 y−1 z−1 Câu 13 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Trang 1/5 Mã đề 001 Câu 14 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 C D −3 A −2 B Câu 15 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (1; 2) C (1; 0) D (0; 1) Câu 16 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; −2; 3) B (1; 2; −3) C (−1; −2; −3) D (−1; 2; 3) Câu 17 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? C z + z = 2bi D z · z = a2 − b2 A |z2 | = |z|2 B z − z = 2a Câu 18 Những số sau vừa số thực vừa số ảo? A Chỉ có số B Khơng có số C D C.Truehỉ có số − 2i (1 − i)(2 + i) Câu 19 Phần thực số phức z = + 2−i + 3i 11 29 11 29 B − C D A − 13 13 13 13 Câu 20 √ Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w = 6z − 25i A B 29 C D 13 Câu 21 Trong kết luận sau, kết luận sai A Mô-đun số phức z số phức C Mô-đun số phức z số thực B Mô-đun số phức z số thực không âm D Mô-đun số phức z số thực dương Câu 22 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực −3 phần ảo là−2 C Phần thực là−3 phần ảo −2i D Phần thực là3 phần ảo (1 + i)2017 có phần thực phần ảo đơn vị? Câu 23 Số phức z = 21008 i 1008 A B C D Câu 24 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = + 7i C w = −7 − 7i D w = − 3i 1 25 Câu 25 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 17 B 31 C −17 D −31 Câu 26 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x+1 B F(x) = e2x C F(x) = e x D F(x) = e x + Câu 27 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A −2 B C D Câu 28 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 4; 4) B C(1; 0; 2) C C(−1; −4; 4) D C(−1; 0; −2) Câu 29 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? a A b f (x) = F(b) − F(a) b Rb B a f (2x + 3) = F(2x + 3) a Rb C a k · f (x) = k[F(b) − F(a)] D Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Trang 2/5 Mã đề 001 Câu 30 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân bằng: A −2024 B C 2025 D 2024 R2 −1 f ′ (x) Câu R31 Mệnh đề nàoRsau sai? R A R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R B R f ′ (x) = f (x) R + C với hàm số f (x) có đạo hàm liên tục R C R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R D ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R Câu 32 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = −2023cos(2023x) B f (x) = − cos(2023x) 2023 C f (x) = cos(2023x) D f (x) = 2023cos(2023x) R2 Câu 33 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = −1 D A = √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 35 Cho số phức z thỏa mãn − 5i |z| = z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 + z + z2 Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 5 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 z+1 Câu 38 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 C P = (|z| − 2)2 B P = |z|2 − D P = |z|2 − Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 97 85 A T = 13 D T = B T = 13 C T = 3 z Câu 41 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A 2 B C D Câu 42 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | Câu 43 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = + 2(ln a)2 C P = ln a D P = 2loga e Trang 3/5 Mã đề 001 Câu 44 Chọn mệnh đề mệnh đề sau: A R (2x + 1)2 dx = C R x dx =5 x + C (2x + 1)3 + C e2x +C B R e2x dx = D R sin xdx = cos x + C Câu 45 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m > −2 Câu 46 Biết B m < π R2 C −3 ≤ m ≤ D −4 ≤ m ≤ −1 C D − ln sin 2xdx = ea Khi giá trị a là: A ln B Câu 47 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 49 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−3; 0) C (−1; 1) D (3; 5) Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ 3a A √ 3a B √ a 15 C √ 3a 30 D 10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001