Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 A (m ) B (m ) C (m ) D 3(m2 ) Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [ ; 2] [22; +∞) B [22; +∞) C ( ; +∞) D ( ; 2] [22; +∞) 4 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 0; 3) B A(1; 0; 3) C A(0; 2; 3) D A(1; 2; 0) Câu Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = x4 + C y = −x4 + 2x2 + D y = −x4 + Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(1; 5; 3) C C(3; 7; 4) D C(5; 9; 5) Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; 2) C I(1; 1; 2) D I(0; 1; −2) √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 450 B 300 C 600 D 1200 Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A −1 B C π D 800π Câu Cho khối nón có đỉnh S , chiều cao thể tích Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Câu 10 Phần ảo số phức z = − 3i A −2 B −3 C D Câu 11 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A 11 B C 12 D Câu 12 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln(6a2 ) B lna C ln Câu 13 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = πxπ−1 C y′ = xπ−1 π D ln D y′ = πxπ Trang 1/5 Mã đề 001 Câu 14 Nếu A R4 −1 R4 R4 f (x) = −1 g(x) = −1 [ f (x) + g(x)] B C −1 Câu 15 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = B y′ = − C y′ = x xln3 x Câu 16 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (−∞; 1) B (1; 3) C (3; +∞) D D y′ = xln3 D (0; 2) Câu 17 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A P(−2; 3) B N(2; 3) C M(2; −3) D Q(−2; −3) z2 Câu 18 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 13 B C D 11 25 1 Câu 19 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B 31 C 17 D −17 Câu 20 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi √ mơ-đun số phức w = 6z − 25i C 29 D A 13 B Câu 21 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực −3 phần ảo là−2 C Phần thực là3 phần ảo D Phần thực là−3 phần ảo −2i 4(−3 + i) (3 − i)2 Câu 22 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ B |w| = 85 C |w| = D |w| = 48 A |w| = !2016 !2018 1−i 1+i + Câu 23 Số phức z = 1−i 1+i A B + i C −2 D Câu 24 biểu thức |z1 + z1 z2 | √ Cho số phức z1 = +√2i, z2 = − i Giá trị √ √ A 30 B 130 C 10 D 10 + 2i + i2017 có tổng phần thực phần ảo 2−i B C R + lnx Câu 26 Nguyên hàm dx(x > 0) x A ln2 x + lnx + C B ln2 x + lnx + C C x + ln2 x + C R1 Câu 27 Tích phân e−x dx e−1 1 A B C − e e e R2 Câu 28 Tính tích phân I = xe x dx A I = −e2 B I = 3e2 − 2e C I = e Câu 25 Số phức z = A D -1 D x + ln2 x + C D e − D I = e2 Câu 29 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C D −2 R1 3x − a a Câu 30 Biết dx = 3ln − , a, b nguyên dương phân số tối giản Hãy b b x + 6x + tính ab A ab = 12 B ab = C ab = D ab = −5 Trang 2/5 Mã đề 001 Câu 31 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x + 1) + C x B x + x+1 x+1 + C C (x − 1) x + C D x2 x + C Câu 32 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = sinx + cosx + C B F(x) = −sinx − cosx + C C F(x) = −sinx + cosx + C D F(x) = sinx − cosx + C Câu 33 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = D I = 10 √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 34 Cho a, b, c số thực z = − + 2 A a + b + c B a2 + b2 + c2 − ab − bc − ca C D a2 + b2 + c2 + ab + bc + ca Câu 35 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = D A = + i Câu 36 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B C 15 D 10 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A ; B ; +∞ C ; D 0; 4 4 √ Giá trị lớn biểu thức Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 z Câu 39 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| bằng? thức + |z|2 √ 1 A B C D 2 √ Câu 40 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| < B < |z| < C ≤ |z| ≤ D |z| > 2 2 √ Câu 41 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm Q Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 4)2 C P = |z|2 − D P = (|z| − 2)2 Trang 3/5 Mã đề 001 Câu 43 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B ax + b 2x )e + C Khi giá trị a + b là: C D Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 45 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 6π B ln + 6π C π cos x F(− ) = π Khi giá trị sin x + cos x 6π ln + 5 D 3π ln + Câu 46 Chọn mệnh đề mệnh đề sau: A R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx C R3 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx D |x2 − 2x|dx = − R2 (x2 − 2x)dx + R3 (x2 − 2x)dx √ 2x − x2 + có số đường tiệm cận đứng là: Câu 47 Đồ thị hàm số y = x2 − A B C D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 14; 15) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Câu 49 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 17 πa2 15 A B C D Câu 50 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 2abc C P = 2a+b+c D P = 26abc Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001