Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đạo hàm của hàm số y = log√2 ∣∣∣∣∣3x − 1 ∣∣∣∣∣ là A y′ = 6∣∣∣∣∣3x − 1 ∣∣[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu Đạo hàm hàm số y = log 3x − là: A y′ = 3x − ln B y′ = 3x − ln C y′ = (3x − 1) ln D y′ = (3x − 1) ln √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 300 C 450 D 1200 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 2 A (m ) B 3(m ) C (m ) D (m ) Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [22; +∞) B ( ; +∞) C ( ; 2] [22; +∞) D [ ; 2] [22; +∞) 4 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 2π B π C 4π D 3π Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 4m2 − m2 − 12 m2 − A B C D 2m 2m m 2m √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ √ a a 15 a A a 15 B C D 3 Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x=5+t x = + 2t y = −1 + t y = −1 + 3t y = + 2t y = + 3t A B C D z = −1 + 3t z = −1 + t z = + 3t z = −1 + t R dx = F(x) + C Khẳng định đúng? x A F ′ (x) = − B F ′ (x) = C F ′ (x) = D F ′ (x) = lnx x x x Câu 11 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 x2 + C B f (x) = sinx + + C A f (x) = −sinx + 2 Câu 10 Cho Trang 1/5 Mã đề 001 C R f (x) = −sinx + x2 + C D R f (x) = sinx + x2 + C Câu 12 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 A 2a B a C a D a Câu 13 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n1 = (−1; 1; 1) C → n3 = (1; 1; 1) D → n4 = (1; 1; −1) Câu 14 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−∞; 1) C (1; 2) D (2; +∞) Câu 15 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 16 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 45◦ B 90◦ C 60◦ D 30◦ (1 + i)(2 + i) (1 − i)(2 − i) Câu 17 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = z B |z| = C z = D z số ảo z Câu 18 Cho hai số phức z1 = + i z2 = − 3i Tính mơ-đun √ √ số phức z1 + z2 D |z1 + z2 | = A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B 10 C −10 D −9 Câu 20 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z2 + 2z + C z + z + D z · z + z + z + Câu 21 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B N(2; 3) C P(−2; 3) D M(2; −3) !2016 !2018 1−i 1+i Câu 22 Số phức z = + 1−i 1+i A −2 B C + i D √ Câu 23 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B ≤ m ≤ C m ≥ m ≤ −1 D −1 ≤ m ≤ − 2i (1 − i)(2 + i) Câu 24 Phần thực số phức z = + 2−i + 3i 29 11 29 11 A B C − D − 13 13 13 13 25 1 Câu 25 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 17 B 31 C −17 D −31 Câu 26 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C D −2 R1 Câu 27 Tích phân e−x dx e−1 1 A B − C D e − e e e Trang 2/5 Mã đề 001 Câu 28 Nguyên hàm A ln2 x + lnx + C R + lnx dx(x > 0) x B x + ln2 x + C C x + ln2 x + C D ln2 x + lnx + C Câu 29 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 1 2 A F(x) = (e x + 5) B F(x) = e x + C F(x) = − (2 − e x ) D F(x) = − e x + C 2 2 Câu 30 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x + 2y + 2z − 15 = B x + 2y + 2z + 15 = C x − 2y + 2z + 15 = D x − 2y + 2z − 15 = Câu 31 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (−3; −1; −4) B (3; 1; 4) C (−3; −1; 4) D (3; −1; −4) R8 R4 R4 Câu 32 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R4 R4 A [4 f (x) − 2g(x)] = −2 B [ f (x) + g(x)] = 10 R8 R8 C f (x) = D f (x) = −5 R Câu 33 Tìm nguyên hàm I = xcosxdx x A I = xsinx − cosx + C B I = x2 sin + C x C I = xsinx + cosx + C D I = x cos + C √ √ √ 42 √ Câu 34 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 35 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| C P = −2016 D P = A P = 2016 B max T = √ Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm P Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 4)2 C P = |z|2 − D P = (|z| − 2)2 Câu 38 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i B |z| = C |z| = D |z| = A |z| = 2 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A B C √ D 2 Trang 3/5 Mã đề 001 √ Câu 40 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B C a2 + b2 + c2 + ab + bc + ca D a2 + b2 + c2 − ab − bc − ca + z + z2 số thực − z + z2 Câu 41 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 C < |z| < 2 D < |z| < 2 Câu 42 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | Câu 43 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 44 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A B 128 C 32 x2 )=8 D 64 Câu 45 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 31π 32π A B 6π C D 5 Câu 46 Hàm số hàm số sau đồng biến R 4x + A y = B y = −x3 − x2 − 5x x+2 C y = x4 + 3x2 D y = x3 + 3x2 + 6x − Câu 47 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2a+2b+3c C P = 26abc D P = 2abc Câu 48 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 400π 125π 500π 250π A B C D 9 Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 50 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001