Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a3 6 Tìm gó[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 a3 Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 300 B 450 C 600 D 1350 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a A a B C D 2 Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể tích khối nón √ √ 4π 2.a π.a3 π 2.a3 2π.a3 A B C D 3 3 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π B V = C V = D V = A V = 3 5 √ Câu Cho a > a , Giá trị alog a bằng? √ A B C D x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − 2y − = B (P) : x − y − 2z = C (P) : x − y + 2z = D (P) : x + y + 2z = Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [ ; 2] [22; +∞) B ( ; +∞) C [22; +∞) D ( ; 2] [22; +∞) 4 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln − B ln + C − ln − D − ln 2 2 x−1 y−2 z+3 Câu Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A Q(1; 2; −3) B P(1; 2; 3) C N(2; 1; 2) D M(2; −1; −2) Câu 10 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16π 16 16 A B C D 15 15 ′ Câu 11 Cho hàm số y = f (x) có đạo hàm f (x) = (x − 2) (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (2; +∞) C (1; 2) D (−∞; 1) Trang 1/5 Mã đề 001 Câu 12 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 B C D A R2 R2 Câu 13 Nếu f (x) = [ f (x) − 2] A B −2 C D Câu 14 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 45◦ B 90◦ C 30◦ D 60◦ Câu 15 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 16 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (−2; 0) B (0; 2) C (0; −2) D (2; 0) Câu 17.√Cho số phức z1 = +√2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ B 130 C 10 D 30 A 10 Câu 18 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A |z2 | = |z|2 B z + z = 2bi C z − z = 2a D z · z = a2 − b2 Câu 19 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B −7 C D z2 Câu 20 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ B 13 C D A 11 − 2i (1 − i)(2 + i) Câu 21 Phần thực số phức z = + 2−i + 3i 29 11 29 11 A B C − D − 13 13 13 13 Câu 22 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm B Mô-đun số phức z số phức C Mô-đun số phức z số thực D Mô-đun số phức z số thực dương 4(−3 + i) (3 − i)2 Câu 23 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = B |w| = C |w| = 48 D |w| = 85 Câu 24 Số phức z = A 21008 (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C D √ Câu 25 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A −1 ≤ m ≤ B m ≥ m ≤ −1 C ≤ m ≤ D m ≥ m ≤ Câu R26 Mệnh đề nàoRsau sai? R A R ( f (x) − g(x)) = R f (x) − R g(x), với hàm số f (x); g(x) liên tục R B R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R C R f ′ (x) = f (x) R + C với hàm số f (x) có đạo hàm liên tục R D k f (x) = k f (x) với số k với hàm số f (x) liên tục R Trang 2/5 Mã đề 001 Câu 27 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ 1√ A f (x) = 2x + + C B f (x)dx = 2x + + C R R √ C f (x)dx = 2x + + C D f (x)dx = √ + C 2x + R2 Câu 28 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A B 2025 C 2024 D −2024 R Câu 29 Tìm nguyên hàm I = xcosxdx x A I = xsinx + cosx + C B I = x2 sin + C x D I = xsinx − cosx + C C I = x2 cos + C R3 Câu 30 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A ( ; 1) B (−1; 0) C (0; ) D (1; 2) 2 Câu 31 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x + 2y + 2z − 15 = B x + 2y + 2z + 15 = C x − 2y + 2z + 15 = D x − 2y + 2z − 15 = Câu 32 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x+1 B F(x) = e2x C F(x) = e x + R2 Câu 33 Tính tích phân I = xe x dx A I = e2 B I = −e2 C I = e D F(x) = e x D I = 3e2 − 2e Câu 34 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| C P = −2016 D P = 2016 A P = B max T = Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 √ Câu 36 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 C ≤ |z| ≤ D < |z| < A |z| > B |z| < 2 2 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! sau đây? ! ! 9 A ; B ; C ; +∞ D 0; 4 4 √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm Q Câu 39 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B z số thực không dương C z số ảo D Phần thực z số âm Trang 3/5 Mã đề 001 Câu 40 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| > B |A| < 2z − i Mệnh đề sau đúng? + iz C |A| ≤ D |A| ≥ Câu 41 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| √ A 2 B z số thực Giá trị lớn + z2 C Câu 42 Cho số phức z , cho z số thực w = |z| bằng? + |z|2 A D √ z số thực Tính giá trị biểu + z2 thức √ B Câu 43 Biết a, b ∈ Z cho A R B C (x + 1)e2x dx = ( D ax + b 2x )e + C Khi giá trị a + b là: C D Câu 44 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 a3 15 A B C D 16 Câu 45 Chọn mệnh đề mệnh đề sau: R R A sin xdx = cos x + C B x dx =5 x + C R R (2x + 1)3 e2x +C D (2x + 1)2 dx = + C C e2x dx = Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Câu 47 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = C R = 14 D R = 15 Câu 49 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C −4 D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001