Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính nguyên hàm ∫ cos 3xdx A − 1 3 sin 3x +C B −3 sin 3x +C C 3 sin 3x +[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 R Câu Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B −3 sin 3x + C C sin 3x + C D sin 3x + C 3 R5 dx Câu Biết = ln T Giá trị T là: 2x − √ C T = D T = 81 A T = B T = 2x + 2017 Câu Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng B Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = C Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng D Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y+2 z x−1 = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y + 2z = B (P) : x − y − 2z = C (P) : x − 2y − = D (P) : x + y + 2z = √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a C D B A a 2 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = −7 D m = Câu Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + ln b B ln(ab) = ln a ln b a ln a C ln( ) = D ln(ab2 ) = ln a + (ln b)2 b ln b √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang tiệm cận đứng B Có tiệm cận ngang khơng có tiệm cận đứng C Khơng có tiệm cận D Khơng có tiệm cận ngang có tiệm cận đứng Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x=5+t x = + 2t y = + 3t y = −1 + t y = + 2t y = −1 + 3t A B C D z = −1 + t z = −1 + t z = −1 + 3t z = + 3t Trang 1/5 Mã đề 001 Câu 10 Với a số thực dương tùy ý, ln(3a) − ln(2a) A lna B ln(6a2 ) C ln R2 R2 Câu 11 Nếu f (x) = [ f (x) − 2] A B C D ln D −2 Câu 12 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 2) C (1; 0) D (−1; 2) R Câu 13 Cho dx = F(x) + C Khẳng định đúng? x B F ′ (x) = C F ′ (x) = lnx D F ′ (x) = A F ′ (x) = − x x x Câu 14 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A B C D 35 35 35 Câu 15 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n3 = (1; 1; 1) B → n1 = (−1; 1; 1) C → n4 = (1; 1; −1) D → n2 = (1; −1; 1) Câu 16 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết a, thể tích khối lăng trụ cho khoảng cách từ A đến mặt phẳng (A′ BC) √ √ √ √ 3 3 A a B a C 2a D a Câu 17 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z + z + C |z|2 + 2|z| + D z2 + 2z + (1 + i)(2 − i) Câu 18 Mô-đun số phức z = √ + 3i √ B |z| = C |z| = D |z| = A |z| = Câu 19 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = 2ki C A = D A = Câu 20 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B 10 C D −9 Câu 21 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = −21009 C (1 + i)2018 = 21009 i D (1 + i)2018 = −21009 i Câu 22 Cho hai √ số phức z1 + z2 √ số phức z1 = + i z2 = − 3i Tính mơ-đun B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = A |z1 + z2 | = 13 Câu 23 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i = √ √ 34 34 D |z| = A |z| = 34 B |z| = C |z| = 34 3 (1 + i)(2 + i) (1 − i)(2 − i) Câu 24 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = B z = z C |z| = D z số ảo z Câu 25 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A P(−2; 3) B N(2; 3) C M(2; −3) D Q(−2; −3) Trang 2/5 Mã đề 001 Câu 26 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = cos(2023x) B f (x) = −2023cos(2023x) cos(2023x) D f (x) = 2023cos(2023x) C f (x) = − 2023 R3 Câu 27 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A (−1; 0) B ( ; 1) C (0; ) D (1; 2) 2 R Câu 28 Tìm nguyên hàm I = xcosxdx A I = xsinx − cosx + C B I = xsinx + cosx + C x x D I = x2 sin + C C I = x2 cos + C 2 R4 R4 R3 Câu 29 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D R + lnx Câu 30 Nguyên hàm dx(x > 0) x 1 A ln2 x + lnx + C B x + ln2 x + C C ln2 x + lnx + C D x + ln2 x + C 2 Câu 31 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B 2x + y − z − = C −2x + y − z − = D −2x + y − z + = R1 3x − a a Câu 32 Biết dx = 3ln − , a, b nguyên dương phân số tối giản Hãy b b x + 6x + tính ab A ab = B ab = −5 C ab = D ab = 12 −−→ Câu 33 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 3; −1) B (−1; −1; −3) C (3; 1; 1) D (1; 1; 3) √ điểm A hình vẽ bên điểm Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm P C điểm M D điểm Q √ Câu 35 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| < B ≤ |z| ≤ C < |z| < D |z| > 2 2 2 Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ C D 2 z Câu 37 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ A B C D 2 Câu 38 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = B max T = C P = 2016 D P = −2016 Trang 3/5 Mã đề 001 √ Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 40 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | √ 2 Mệnh đề Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.√ B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Câu 42 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 85 97 A T = 13 B T = D T = C T = 13 3 Câu 43 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a a 15 3a 3a 30 A B C D 2 10 x2 + mx + Câu 44 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B m = −1 C m = D Khơng có m Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Câu 45 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D x Câu 46 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 128 32 64 √ Câu 47 Tính đạo hàm hàm số y = log4 x − x x x ′ ′ ′ A y′ = B y = C y = D y = √ 2(x2 − 1) ln (x2 − 1)log4 e (x2 − 1) ln x2 − ln Câu 48 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 2mn + 2n + 3mn + n + C log2 2250 = D log2 2250 = m n Câu 49 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = m = −10 C m = D m = Câu 50 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx Trang 4/5 Mã đề 001 C R3 |x2 − 2x|dx = − D R3 R2 (x2 − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001