1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập thpt qg môn toán (989)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,73 KB

Nội dung

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Tập nghiệm của bất phương trình log1 2 (x − 1) ≥ 0 là A [2[.]

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (1; 2] C (−∞; 2] D (1; 2) Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = −2 C yCD = 52 D yCD = 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = B Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 C Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng D Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng Câu Cho hàm số y = Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 4π C 3π D 2π Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ −1 B m > C m ≥ D m ≥ Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(3; 7; 4) C C(−3; 1; 1) D C(5; 9; 5) Câu Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D Câu Có số nguyên x thỏa mãn log3 A 184 B 186 x2 −16 343 < log7 C 92 x2 −16 ? 27 D 193 Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A 23 B C 43 D Câu 10 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (−1; 2; 3) C (1; −2; 3) D (−1; −2; −3) Câu 11 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = −1 A M(2; −1; −2) B P(1; 2; 3) C N(2; 1; 2) z+3 −2 Điểm thuộc d? D Q(1; 2; −3) Câu 12 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường trịn Tâm đường trịn có tọa độ A (0; 2) B (2; 0) C (0; −2) D (−2; 0) Trang 1/5 Mã đề 001 Câu 13 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −2 B −6 C −8 D −4 Câu 14 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2021 B 2022 C 2019 D 2020 Câu 15 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A N(1 ; ; 7) B Q(4 ; ; 2) C M(0 ; ; 2) D P(4 ; −1 ; 3) Câu 16 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (3; +∞) C Hàm số cho đồng biến khoảng (−∞; 3) D Hàm số cho nghịch biến khoảng (1; 4) Câu 17 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón C S = πa2 D S = πa2 A S = πa2 B S = πa2 4 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 18 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường trịn (C) √ √ A r = B r = C r = D r = z Câu 19 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác cân B Tam giác OAB tam giác vuông C Tam giác OAB tam giác nhọn D Tam giác OAB tam giác Câu 20 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = D r = 20 √ Câu 21 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 10 B |z| = 33 C |z| = 50 D |z| = Câu 22 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 15 25 A S = B S = C S = 4 D S = 1+i z 25 Câu 23 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài MN √ √ A MN = B MN = C MN = D MN = Câu 24 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B 3π C π D 2π Trang 2/5 Mã đề 001 √ Câu 25 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 1 B ≤ |z| ≤ C |z| < D |z| > A < |z| < 2 2 z Câu 26 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác vuông B Tam giác OAB tam giác cân C Tam giác OAB tam giác nhọn D Tam giác OAB tam giác √ Câu 27 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = 1+i z Câu 28 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 15 25 A S = B S = C S = D S = 2 4 Câu 29 Gọi z1 z2 nghiệm phương trình z − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√độ dài MN √ C MN = D MN = A MN = B MN = Câu 30 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x + y − = D x − y + = Câu 31 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B π C 4π D 3π z−z =2? Câu 32 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường tròn B Một Elip C Một Parabol D Một đường thẳng Câu 33 Cho điểm A(1; 2; 0), B(1; 0; −1), C(0; −1; 2) Tam giác ABC A tam giác B tam giác vuông đỉnh A C tam giác cân đỉnh A D tam giác có ba góc nhọn − −a = (1; 2; 0) → Câu 34 Gọi φ góc hai vectơ → b = (2; 0; −1), cos φ 2 C − D A B √ 5 Câu 35 Trong không gian với hệ tọa độ (P) : x − 2y + z + = 0, cho hình hộp M biết M, M(0; 3; −2), M(2; 2; 1), D′ (3; 0; 1) Khi tọa độ điểm B là? A B(−1; 2; 2) B B(1; −2; −2) C B(2; −2; 1) D B(2; −1; 2) Câu 36 Trong không gian Oxyz, cho điểm M nằm mặt phẳng (Oxy)sao cho M không trùng với gốc tọa độ khơng nằm hai trục Ox, Oy, tọa độ điểm M (a, b, c , 0) A (a; 1; 1) B (0; 0; c) C (0; b; a) D (a; b; 0) → − → − − → − → − → Câu 37 Trong không gian với hệ trục tọa độ Oxyz, cho ⃗a = ⃗i − ⃗j + k , b = i + (m + 1) j − k Tìm − −a ⊥→ m để → b A m = −1 B m = −2 C m = D m = → − → − Câu 38 √ Cho vectơ a = (1; −1; 2), độ dài vectơ a √ A B C − D Câu 39 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Đồ thị hàm số cắt trục tung điểm (0; 1) B Điểm cực tiểu hàm số (0; 1) C Đồ thị hàm số khơng có tiệm cận D Đồ thị hàm số có điểm cực đại Trang 3/5 Mã đề 001 Câu 40 Cho tứ diện OABC có cạnh OA, OB, OC đơi vng góc OA = OB = OC = Tính thể tích V khối tứ diện OABC 1 B V = C V = D V = A V = Câu 41 Bảng biến thiên hình hàm số hàm số sau? x −∞ +∞ + y′ + +∞ y −∞ 2x − 2x + 2x − B y = C y = x−1 x−1 x+1 Câu 42 Hàm số hàm số nghịch biến R? x−3 A y = x4 − 2x2 + B y = −x2 + 3x + C y = 5−x Câu 43 Cho hàm số y = f (x) có bảng biến thiên sau: A y = x −∞ y′ 2x + x−1 D y = −x3 − 2x + +∞ −2 − D y = − +∞ −2 y −∞ −2 Đồ thị hàm số y = f (x) có đường tiệm cận đứng tiệm cận ngang? A B C D Câu 44 Hình đa diện có cạnh? A 21 B 18 Câu R45 Công thức sai? A R sin x = − cos x + C C cos x = sin x + C C 15 D 12 R B R a x = a x ln a + C D e x = e x + C p Câu 46 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếux > thìy < −15 C Nếu < x < π y > − 4π D Nếu < x < y < −3 Câu 47 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = 13 C m = D m = −2 Câu 48 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (−2; 1; 2) C (2; −1; 2) D (−2; −1; 2) Trang 4/5 Mã đề 001 x tập xác định Câu 49 Giá trị nhỏ hàm số y = x +1 1 A y = −1 B y = − C y = D y = R R R R 2 Câu 50 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B πR3 C 4πR3 D 6πR3 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 11/04/2023, 15:43

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN