Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C − D 6 R Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = 2F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 52 B yCD = 36 C yCD = D yCD = −2 2x + 2017 Câu Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng B Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = C Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 D Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng Câu Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab) = ln a ln b B ln(ab2 ) = ln a + ln b a ln a C ln( ) = D ln(ab2 ) = ln a + (ln b)2 b ln b Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Câu Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường trịn Tâm đường trịn có tọa độ A (2; 0) B (−2; 0) C (0; 2) D (0; −2) Câu Có số nguyên x thỏa mãn log3 A 193 B 184 Câu Phần ảo số phức z = − 3i A −2 B x2 −16 343 < log7 C 186 C −3 x2 −16 ? 27 D 92 D Câu 10 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A 21 B 43 C 25 D 14 Câu 11 Tiệm cận ngang đồ thị hàm số y = A y = 23 B y = − 32 2x+1 3x−1 đường thẳng có phương trình: C y = 31 D y = − 13 Câu 12 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (−1; 2; 3) C (1; −2; 3) D (−1; −2; −3) Trang 1/5 Mã đề 001 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 13 Cho số phức zthỏa mãn i + tròn (C) √ Tính bán kính rcủa đường trịn (C) √ A r = B r = C r = D r = y x−1 x−2 = = điểm Câu 14 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B (2 ; −3 ; 1) C ( ; − ; ) D ( ; − ; ) 3 3 3 3 Câu 15 Đường thẳng y = tiệm cận ngang đồ thị đây? −2x + 2x − 1+x A y = B y = C y = D y = x−2 x+2 − 2x x+1 Câu 16 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −2 B C −3 D Câu 17 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 50 B 30 C 40 D 60 Câu 18 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 19 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ Để tam giác MNP √ số phức k √ z1 , z2 số phức w√ = x + iy mặt phẳng phức − i hoặcw = − 27 + i B w = 27 − i hoặcw = 27 +√i A w = − 27 √ √ √ D w = + 27i hoặcw = − 27i C w = + 27 hoặcw = − 27 √ Câu 20 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 A ≤ |z| ≤ B |z| < C < |z| < D |z| > 2 2 Câu 21 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B π C 2π D 4π −2 − 3i Câu 22 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 23 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B 3π C 4π D π z−z =2? Câu 24 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Elip B Một Parabol C Một đường tròn D Một đường thẳng Câu 25 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu 26 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B √ C √ D 13 Trang 2/5 Mã đề 001 √ Câu 27 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 28 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu số ảo mệnh đề sau đúng? A Tam giác OAB tam giác nhọn C Tam giác OAB tam giác z w B Tam giác OAB tam giác vuông D Tam giác OAB tam giác cân Câu 29 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B π C 2π D 3π Câu 30 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π C 5π D A 25π B 2 Câu 31 Gọi z1 z2 nghiệm phương trình z − 4z + = Gọi M, N điểm biểu diễn z1 , z2 √ mặt phẳng phức Khi độ dài MN √ A MN = B MN = C MN = D MN = Câu 32 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 22 B r = C r = 20 D r = → − −a = (1; 2; 0) b = (2; 0; −1), cos φ Câu 33 Gọi φ góc hai vectơ → 2 B C D √ A − 5 → − → − Câu 34 √ Cho vectơ a = (1; −1; 2), độ dài vectơ a √ A B C − D → − −a = (1; 3; 4), tìm vectơ b phương với vectơ → −a Câu 35 Cho vectơ → → − → − → − → − A b = (2; −6; −8) B b = (−2; 6; 8) C b = (−2; −6; 8) D b = (−2; −6; −8) √ → − −a = 13 Câu 36 Trong không gian với hệ trục tọa độ Oxyz, cho ⃗a = m⃗i+3 ⃗j+2 k Hãy tìm m, biết → A m = B m = C m = D m = −1 Câu 37 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 2; 0),B(3; −2; 2),C(2; 3; 1) Khoảng cách từ trung điểm đoạn AB đến trọng tâm tam giác ABC A B C D → − −a = (1; −1; 2), b = (3; 0; −1), → −c = (−2; 5; 1), vectơ Câu 38 Trong không gian Oxyz cho ba vectơ → → − → − −a + b − → −c có tọa độ m =→ A (6; 0; −6) B (−6; 6; 0) C (0; 6; −6) D (6; −6; 0) Câu 39 Cho hàm số y = f (x) có bảng biến thiên sau: x −∞ y′ +∞ −2 − − +∞ −2 y −∞ −2 Đồ thị hàm số y = f (x) có đường tiệm cận đứng tiệm cận ngang? A B C D Trang 3/5 Mã đề 001 Câu 40 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A −10 B C −35 D 17 Câu 41 Hàm số hàm số nghịch biến R? x−3 A y = −x2 + 3x + B y = −x3 − 2x + C y = 5−x D y = x4 − 2x2 + Câu 42 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−1; +∞) B (0; +∞) C (−∞; 0) D (−1; 0) 2x − Trong khẳng định sau, khẳng định đúng? −x + A Hàm số đồng biến khoảng (−2; +∞) B Hàm số đồng biến khoảng (2; +∞) C Hàm số đồng biến khoảng (−2; 2) D Hàm số đồng biến tập xác định Câu 43 Cho hàm số y = Câu 44 Bảng biến thiên hình hàm số hàm số sau? x −∞ +∞ + y′ + +∞ y A y = 2x − x−1 B y = 2x + x−1 −∞ C y = 2x + x−1 D y = 2x − x+1 Câu 45 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m > C m ≤ D m < Câu 46 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m ≥ e−2 B m > 2e C m > D m > e2 √ Câu 47 Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA′ = 3a Thể tích khối lăng trụ cho là: √ √ A 3a3 B 3a3 C a3 D 3a3 Câu 48 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (0; 2) C m ∈ (−1; 2) D −1 < m < √ Câu 49 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành π 10π A V = B V = π C V = D V = 3 p Câu 50 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếu < x < y < −3 C Nếux = y = −3 D Nếux > thìy < −15 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001