1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập thpt qg môn toán (602)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 123,66 KB

Nội dung

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Tìm nghiệm của phương trình 2x = ( √ 3) x A x = −1 B x = 2[.]

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 √ x Câu Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = y+2 z x−1 = = Viết phương Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y − 2z = B (P) : x + y + 2z = C (P) : x − 2y − = D (P) : x − y + 2z = Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32π 8π 32 B V = C V = D V = A V = 5 Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền √ 3bằng 2a Tính thể tích3 khối nón √ π 2.a π.a 4π 2.a3 2π.a3 A B C D 3 3 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln − B − ln C ln − D ln + 2 2 Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A R Câu Cho x dx = F(x) + C Khẳng định đúng? A F ′ (x) = 1x B F ′ (x) = x22 C F ′ (x) = ln x D F ′ (x) = − x12 Câu Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d = R C d > R D d = = y−1 = Câu Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A B 113 C D 31 z−1 −3 Gọi (P) mặt Câu 10 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (−∞; 1) C (1; +∞) D (1; 2) Câu 11 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A 23 B C D 43 Câu 12 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 42 a3 B 22 a3 C 2a3 D 62 a3 Trang 1/5 Mã đề 001 Câu 13 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B C −2 D −3 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A I(−1; −2; 3) B H(−2; −1; 3) C K(3; 0; 15) D J(−3; 2; 7) Câu 15 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −2 C −8 D −4 Câu 16 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 48 D 64 C 76 Câu 17 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 60 B 30 C 40 D 50 R Câu 18 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = cos 3x B f (x) = − C f (x) = −3 cos 3x D f (x) = 3 Câu 19 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B 3π C 4π D π √ Câu 20 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = B |z| = 33 C |z| = 50 D |z| = 10 z − z =2? Câu 21 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một Elip C Một Parabol D Một đường tròn Câu 22 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ B max T = C max T = D max T = A max T = 10 −2 − 3i Câu 23 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 24 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = C r = 20 D r = 22 Câu 25 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A π B 3π C 2π D 4π z+i+1 Câu 26 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một Parabol B Một đường tròn C Một đường thẳng D Một Elip Câu 27 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 25π C D 5π Trang 2/5 Mã đề 001 Câu 28 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu số ảo mệnh đề sau đúng? A Tam giác OAB tam giác nhọn C Tam giác OAB tam giác Câu 29 Biết số phức z thỏa mãn |z − − 4i| = Tính |z| √ √ A |z| = B |z| = 10 √ z w B Tam giác OAB tam giác vuông D Tam giác OAB tam giác cân biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn C |z| = √ 33 D |z| = 50 Câu 30 Gọi z1 z2 nghiệm phương trình z − 4z + = Gọi M, N điểm biểu diễn z1 , z2 √ √ mặt phẳng phức Khi độ dài MN B MN = C MN = D MN = A MN = √ Câu 31 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 C |z| < D ≤ |z| ≤ A |z| > B < |z| < 2 2 Câu 32 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = 20 D r = → − → − Câu 33 √ Cho vectơ a = (1; −1;√2), độ dài vectơ a A B − C D → − −a = (1; 2; 0) b = (2; 0; −1), cos φ Câu 34 Gọi φ góc hai vectơ → 2 B √ D A − C 5 − → − → − → −−→ Câu 35 Trong không gian Oxyz, gọi i , j , k vectơ đơn vị, với M(x; y; z) OM → − → − − → − → − − → − → − − → − → − − A x j + y i + → z k B −x i − y j − → z k C x i + y j + → z k D x i − y j − → z k Câu 36 Trong không gian với hệ trục tọa độ Oxyz, cho A(0; −1; 1), B(−2; 1; −1), C(−1; 3; 2) Biết ABCD hình bình hành, tạo độ điểm D A D(1; 3; 4) B D(−1; 1; ) C D(−1; −3; −2) D D(1; 1; 4) Câu 37 Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A′ B′C ′ D′ biết A(1; −1; 0), B′ (2; 1; 3), C ′ (−1; 2; 2), a, b → Khi tọa độ điểm Oxy là? A (α3 ) : 2x + 3y − z + = B (α1 ) : x − 2y + z − = y z+2 x−1 = = D (α2 ) : 3x + 5y − z − = C ∆ : −1 − − → − −a → −a → Câu 38 Gọi φ góc hai vectơ → b , với → b khác , cos φ − → −→ − − − → −a + → −a → → −a → a b b b −→ b A B C D − − − − → → → → − → − → − → − → a b a b a b a b x+1 Tìm giá trị lớn hàm số đoạn [−1; 2] Câu 39 Cho hàm số y = 3−x A B C −1 D Câu 40 Hình đa diện có cạnh? Trang 3/5 Mã đề 001 A 15 B 12 C 18 D 21 Câu 41 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) B Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) C Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) D Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) Câu 42 Cho tứ diện OABC có cạnh OA, OB, OC đơi vng góc OA = OB = OC = Tính thể tích V khối tứ diện OABC 1 A V = B V = C V = D V = Câu 43 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A −35 B −10 C 17 D Câu 44 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Đồ thị hàm số có điểm cực đại B Đồ thị hàm số cắt trục tung điểm (0; 1) C Đồ thị hàm số khơng có tiệm cận D Điểm cực tiểu hàm số (0; 1) Câu 45 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (−2; 1; 2) C (−2; −1; 2) D (2; −1; 2) Câu 46 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 2πR3 C 6πR3 D πR3 Câu 47 Hình nón có bán kính đáy R, đường sinh l diện tích xung quanh √ √ A π l2 − R2 B πRl C 2πRl D 2π l2 − R2 Câu 48 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 3a 5a 2a a A √ B C D √ 5 Câu 49 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −2 C m = 13 D m = −15 √ Câu 50 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hoành Tìm thể tích V khối trịn xoay tạo thành π 10π A V = B V = π C V = D V = 3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 11/04/2023, 15:32

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN