Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Một hình trụ có diện tích xung quanh bằng 4π và có thiết d[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 3π C 2π D 4π Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 D m < A Không tồn m B m < C < m < 3 Câu Đạo hàm hàm số y = log √2 3x − là: 2 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = B f (−1) = −5 C f (−1) = −1 D f (−1) = −3 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x−1 y+2 z = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vuông góc với d A (P) : x − 2y − = B (P) : x − y − 2z = C (P) : x + y + 2z = D (P) : x − y + 2z = Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu Tiệm cận ngang đồ thị hàm số y = A y = 13 B y = − 31 2x+1 3x−1 đường thẳng có phương trình: C y = 32 D y = − 23 Câu Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (6; 7) C (7; 6) D (−6; 7) Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx B 32 C D A 43 Câu 10 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (−∞; 1) B (1; 3) C (0; 2) D (3; +∞) Câu 11 Cho cấp số nhân (un ) với u1 = công bội q = 12 Giá trị u3 A 41 B 12 C 27 D Câu 12 Cho khối nón có đình S , chiều cao thể tích 800π Gọi A B hai điểm thuộc đường√ tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt √ phẳng (S AB) 24 A B 24 C D R Câu 13 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = −3 cos 3x B f (x) = − C f (x) = D f (x) = cos 3x 3 Trang 1/5 Mã đề 001 − → Câu 14 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 30 C 45◦ D 90◦ Câu 15 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 2; 3) −n = (1; −2; 3) −n = (1; −2; −1) −n = (1; 3; −2) A → B → C → D → Câu 16 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (0 ; +∞) B (−2 ; 0) C (−∞ ; −2) D (−1 ; 4) x−2 y−6 z+2 = = Câu 17 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ D 10 A √ B √ C √ 10 53 Câu 18 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón C S = πa2 D S = πa2 A S = πa2 B S = πa2 4 Câu 19 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ B max T = C max T = D max T = 10 A max T = Câu 20 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A π B 2π C 3π D 4π Câu 21 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C 10 D √ Câu 22 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 23 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B −1 C D Câu 24 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 22 B r = C r = D r = 20 1+i Câu 25 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z ′ mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM 15 25 25 15 A S = B S = C S = D S = 4 2 Câu 26 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B π C 2π D 3π Câu 27 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A π B 3π C 4π D 2π Trang 2/5 Mã đề 001 √ Câu 28 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 1 C ≤ |z| ≤ D |z| < A |z| > B < |z| < 2 2 Câu 29 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = 10 B max T = C max T = D max T = −2 − 3i z + = Câu 30 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện √ − 2i A max |z| = B max |z| = C max |z| = D max |z| = Câu 31 Tìm tập hợp điểm M biểu diễn số phức z cho w = A Một Parabol B Một đường thẳng C Một Elip z+i+1 số ảo? z + z + 2i D Một đường tròn Câu 32 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = D r = 20 Câu 33 √ hai điểm A(−1; 2; 3), B(0; √ √ Trong không gian cho √ 1; 1), độ dài đoạn ABbằng B C D 12 A 10 Câu 34 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 0; 1),B(2; 1; 0),C(3; 2; 1) Hãy tìm tọa độ −−→ −−→ −−→ điểm M cho: 2AM = BM + 5AC A (9; 10; 2) B (10; 9; 9) C (10; 9; 2) D (9; 2; 10) − −a = (1; 3; 4), tìm vectơ → −a Câu 35 Cho vectơ → b phương với vectơ → → − → − → − → − A b = (−2; −6; −8) B b = (−2; −6; 8) C b = (−2; 6; 8) D b = (2; −6; −8) −u = (u ; u ; u ) → −v = (v ; v ; v ), → −u → −v = Câu 36 Cho vectơ → A u1 v1 + u2 v2 + u3 v3 = C u1 + v1 + u2 + v2 + u3 + v3 = 3 B u1 v2 + u2 v3 + u3 v1 = −1 D u1 v1 + u2 v2 + u3 v3 = Câu 37 Trong không gian với hệ tọa độ (P) : x − 2y + z + = 0, cho hình hộp M biết M, M(0; 3; −2), M(2; 2; 1), D′ (3; 0; 1) Khi tọa độ điểm B là? A B(2; −2; 1) B B(−1; 2; 2) C B(2; −1; 2) D B(1; −2; −2) Câu 38 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 5; 0),B(3; 7; −4),C(2; 0; −1) Tọa độ điểm E cho A trọng tâm tam giác EBC A (0; 8; 5) B (−2; 8; 5) C (−2; 1; 5) D (−2; 8; − ) Câu 39 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A −35 B 17 C D −10 x+1 Câu 40 Cho hàm số y = có đồ thị (C) đường thẳng d có phương trình y = − x Tìm số giao x−1 điểm (C) d A B C D Câu 41 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A (1; 2) B x = C (0; 3) D x = Câu 42 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối tứ diện B Khối lập phương C Khối mười hai mặt D Khối bát diện Trang 3/5 Mã đề 001 Câu 43 Xét hàm số f (x) = −x4 + 2x2 + đoạn [0; 2] Trong khẳng định sau, khẳng định sai? A Hàm số f (x) đạt giá trị nhỏ đoạn [0; 2] x = B Giá trị nhỏ hàm số f (x) đoạn [0; 2] −5 C Hàm số f (x) đạt giá trị lớn đoạn [0; 2] x = D Giá trị lớn hàm số f (x) đoạn [0; 2] Câu 44 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Điểm cực tiểu hàm số (0; 1) B Đồ thị hàm số có điểm cực đại C Đồ thị hàm số cắt trục tung điểm (0; 1) D Đồ thị hàm số khơng có tiệm cận Câu 45 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 3 πR C 4πR3 D πR3 Câu 46 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 6πR3 C 2πR3 D πR3 Câu 47 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; ln3) C S = (−∞; 2) D S = [ 0; +∞) √ Câu 48 Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA′ = 3a Thể tích khối lăng trụ cho là: √ √ B 3a3 C 3a3 D a3 A 3a3 √ x Câu 49 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H1) C (H4) D (H3) p Câu 50 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux > thìy < −15 C Nếux = y = −3 D Nếu < x < y < −3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001