Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biể[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D R Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(x) − + C Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ −1 B m ≥ C m > D m ≥ Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(1; 5; 3) C C(5; 9; 5) D C(3; 7; 4) Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = −2 C yCD = 36 D yCD = 52 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 4π B π C 3π D 2π ; y = 0; x = 0; x = Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B − ln − C ln − D ln + 2 2 y−6 z+2 x−2 Câu Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = d2 : −2 x−4 y+1 z+2 = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng cách −2 từ điểm M(1; 1; 1) đến (P) √ A 10 B √ C √ D √ 10 53 − Câu 10 Đạo hàm hàm số y = (2x + 1) tập xác định − − A 2(2x + 1) ln(2x + 1) B − (2x + 1) − − C (2x + 1) ln(2x + 1) D − (2x + 1) Câu 11 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD)√theo a √ a a B 2a C D a A 2 Trang 1/4 Mã đề 001 Câu 12 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 13 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A x5 + sin x + C B x5 − sin x + C C 5x5 + sin x + C D 5x5 − sin x + C Câu 14 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 C 6a3 D A 2a3 B 3 Câu 15 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A 384 B −384 C 192 D −192 Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A J(−3; 2; 7) B K(3; 0; 15) C I(−1; −2; 3) D H(−2; −1; 3) Câu 17 Biết z0 nghiệm phức có phần ảo âm phương trình z2 − (3 − 2i)z + − i = Khi tổng phần thực phần ảo z0 A B C -1 D -3 Câu 18 Tổng nghịch đảo nghiệm phương trình z4 −z3 −2z2 +6z−4 = tập số phức 3 B − C D − A 2 2 Câu 19 Hai số phức z1 = + i z2 = − 3i nghiệm phương trình sau đây? A z2 + (1 + 4i)z − + 7i = B z2 − (5 − 2i)z + − 7i = C z2 + (5 − 2i)z − + 7i = D z2 − (1 + 4i)z + − 7i = Câu 20 Tìm tất giá trị thực tham số m để phương trình mz2 + 2mz − 3(m − 1) = khơng có nghiệm thực 3 A m < m > B ≤ m < C m ≥ D < m < 4 Câu 21 Biết phương trình z + mz − m + = có hai nghiệm số ảo Khi tham số thực m gần giá trị giá trị sau? A B −4 C D −1 Câu 22 Gọi M, N hai điểm biểu diễn số phức nghiệm phương trình z2 − 4z + 29 = Độ dài MN √ bao nhiêu? √ A MN = B MN = C MN = 10 D MN = 10 Câu 23 Biết z nghiệm phức có phần ảo dương phương trình z2 − 4z + 13 = Khi mô-đun số phức w = √ z + 2z bao nhiêu? √ √ A |w| = 37 B |w| = C |w| = 13 D |w| = 13 Câu 24 Gọi z1 , z2 , z3 ba nghiệm phức phương trình z3 −z2 +2 = Khi tổngP = |z1 +z2 +z3 +2−3i| bao nhiêu? √ √ A P = B P = C P = 13 D P = Câu 25 Biết z = + i z = nghiệm phương trình z3 + az2 + bz + c = (với a, b ∈ R ) Khi tổng a + b + c bao nhiêu? A B C D −2 800π Câu 26 Cho khối nón có đỉnh S , chiều cao thể tích Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Trang 2/4 Mã đề 001 ax + b có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (2; 0) B (−2; 0) C (0; −2) Câu 27 Cho hàm số y = D (0; 2) Câu 28 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d > R C d = R D d < R Câu 29 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; 6) C (6; 7) D (7; −6) Câu 30 Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (2; 3) C (12; +∞) D (−∞; 3) Câu 31 Đồ thị hàm số có dạng đường cong hình bên? x−3 B y = x2 − 4x + C y = x3 − 3x − D y = x4 − 3x2 + A y = x−1 Câu 32 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A B C D 35 35 35 Câu 33 Cho hàm số y = ax + bx + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 0) C (1; 2) D (−1; 2) 2z − i Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| < B |A| > C |A| ≤ D |A| ≥ z số thực Giá trị lớn Câu 35 Cho số phức z thỏa mãn z số thực ω = + z2 biểu thức √ M = |z + − i| √ A 2 B C D Câu 36 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B z số ảo C Phần thực z số âm D |z| = Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ A B C D √ 2 Câu 38 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Câu 39 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = C A = D A = −1 Câu 40 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 √ Câu 41 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Trang 3/4 Mã đề 001 Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm N Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 43 Tìm đạo hàm hàm số: y = (x + 1) 1 1 − 3 A 3x(x2 + 1) B (x2 + 1) C (2x) D x 2 → − −a = (−1; 1; 0), b = (1; 1; 0), → −c = (1; 1; 1) Trong Câu 44 Trong không gian Oxyz, cho ba véctơ → mệnh đề sau, mệnh đề sai? → − − → − − A b ⊥→ c B b ⊥→ a √ −a = C → √ −c = D → −a = (4; −6; 2) Phương Câu 45 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t B x = + 2ty = −3tz = −1 + t C x = + 2ty = −3tz = + t D x = −2 + 4ty = −6tz = + 2t Câu 46 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; 3; −4) −n = (2; −3; 4) −n = (−2; 3; 1) −n = (−2; 3; 4) A → B → C → D → Câu 47 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (2; +∞) B (−∞; −2) C (−2; 0) D (0; 2) Câu 48 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; −2; 3); R = B I(−1; 2; −3); R = C I(1; 2; −3); R = D I(1; 2; 3); R = R3 Câu 49 Biết F(x) = x nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx 32 A B 10 26 C D √ Câu 50 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = a B d = a C d = 2a D d = a - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001